Guiding the Cloud

Optimizing the Total Energy Consumption and CO2 Emissions by Distributing IT Workload Among Worldwide Dispersed Data Centers
Guiding the Cloud

Optimizing the Total Energy Consumption and CO2 Emissions by Distributing IT Workload Among Worldwide Dispersed Data Centers

F.T. van Schie (0751230)
Author

V. Zavrel
Supervisor

J.I. Torrens Galdiz
Supervisor

J.L.M. Hensen
Supervisor

Contact
F.T. van Schie
Author
franktbedankt@hotmail.com
+31 (0)6 44 019918

University of Technology Eindhoven
Unit Building Physics and Services
Department of the Built Environment

Deerns Nederland B.V.
Unit Data Centers

27 May 2015

Cover picture: www.computeridee.nl – Hofsman, T. 2014. Kassa blundert met test 'hoe snel is jouw internet'
ABSTRACT

Major internet service providers have built and are currently building the world’s largest data centers (DCs), which has already resulted in significant global energy consumption. Energy saving measures from chip to building level have been introduced gradually in recent decades. However, there is further potential for savings by assessing the performance of different DCs on a wider scale and evaluating IT workload distribution strategies among these DCs. This paper proposes a methodology to optimize the electricity consumption and CO₂ emissions by distributing IT workload across multiple imaginary DCs. The DCs are modelled and controlled in a virtual test environment based on a building energy simulation (BES) tool (TRNSYS) and a controller tool (Matlab) is used to support testing and tuning of the optimization algorithm. A case study, consisting of the distribution of IT workload across four different types of data centers in multiple locations with different climate conditions, is presented. The case study will illustrate the efficiency of the approach proposed in this paper.

INTRODUCTION

In 2013, the electricity demand by IT systems approached 10% of world electricity generation (Mills, 2013). The demand for IT workloads, e.g. storage, network, and computation, is increasing rapidly (Rao et al., 2012a). This continuous growth of IT workloads has resulted in larger, more complex and greater energy dense DCs to process the data requests of all customers (Oró et al., 2015). As these IT workloads become larger, DCs’ electricity consumption shows corresponding increases. The DCs’ electricity consumption and the energy sources used to generate this electricity greatly influence the carbon footprint of a DC (Oró et al., 2015). An even larger increase of the carbon footprint is expected in the future as the dependence on coal as a source of electricity raises (Mills, 2013). A decrease in the electricity consumption and carbon footprint could be obtained by equipping DCs with renewable energy sources (RES). However, energy generation from RES is unpredictable due to ever changing weather conditions, while the IT requests of a DC must be processed at any time (Oró et al., 2015). Electricity saving measures for DCs have been examined on all different levels of functional abstraction. For example, twenty-two DCs have been benchmarked for the ‘best-practice’ technologies to reduce the electricity costs (Greenberg et al., 2006). Another approach to reduce the electricity costs is to combine information from management systems in a DC to enhance the performance of various systems (Sharma et al., 2008; Mohsenian-Rad et al., 2010). Similar to these studies, most research in this area has focused on reducing the electricity costs per DC at one specific location. Little research has been performed to reduce the total electricity consumption at multiple locations (Rao et al., 2012b). Moreover, there is no earlier research studying the optimization of multiple performance indicators at the same time, such as the combination of the total electricity consumption and CO₂ emissions.

The main objective of this research is to identify the potential reduction in electricity consumption and CO₂ emissions by distributing the IT workload among geographically dispersed DCs around the world. This principle will be referred to as ‘Guiding the Cloud’. First, in order to answer this question, a literature review is performed. The next step is to define an evaluation method to assess the performance of ‘Guiding the Cloud’. The virtual test environment based on the performance assessment evaluation is then discussed. This is important because this research is only based on computational building energy simulation (BES). The BES includes several DCs to support tuning and testing of the optimization algorithm. The optimization algorithm is analyzed and described using a case study that contains the distribution of IT workload across several DCs, that differ in their HVAC systems and RES, locations across the world and their corresponding climate conditions, and net electricity generation.

GUIDING THE CLOUD©

The original principle of ‘Guiding the Cloud’ is based on a collaboration between the HVAC, power, and IT management systems to establish an optimum IT load distribution in an appropriate time (Deerns, 2012). Combining the measured performance data and weather data, enables to model a representation of the DC. Then, using the weather forecast and predicted IT workload as an input, this
representation can be used to estimate the DC’s behavior in time. Based on this information, the IT workload can be scheduled via the IT management system in such a manner that minimal energy consumption is needed. If the goal would be to optimize other performance indicators than electricity consumption and CO2 emissions, additional information from other sources could be used. For example, including the electricity contract enables to minimize the electricity costs. Or, by predicting the availability of different systems, the maintenance and IT workload schedule can be configured to maximize the reliability of the DC.

Besides the collaboration between management systems, as described above, another important element of ‘Guiding the Cloud’ is the focus on multiple DCs at the same time. To be more specific, DCs are increasingly operating worldwide with activities dispersed globally. To support these worldwide activities, often multiple IT resources are geographically scattered. The use of these IT resources would be more beneficial, if worldwide IT resources were globally integrated by virtualization techniques, whereby the surplus of the IT resources could be used by another location (Stanoevska-Slabeva et al., 2010). Considering multiple DCs, as such, would enable a global optimization of the DCs’ performance.

The DCs’ performance is a key element in the decision to distribute IT workload from one location to another. However, the performance of the data network used to transport the IT workload should also be included in decision making (Taal et al., 2013). In a global scale data network the performance is dominated by the switching infrastructure rather than the transport infrastructure (Tucker, 2008). The switching infrastructure contains, for example, switches and routers while the transport infrastructure includes the line amplifiers, regenerators and optical switches.

Selecting a strategy to distribute IT workload among several DCs, including the DC’s and infrastructure’s performance, represents a challenge due to the different domains involved in the decision. For example each DC and infrastructure has its own characteristics considering HVAC systems, power systems, IT facilities and possible RES. Besides, the characteristics associated with their location such as climate conditions and net electricity generation must also be considered. Many of the new technologies to reduce electricity consumption or costs have been developed to reduce a single objective; however, this paper focuses on simultaneously reducing multiple objectives.

CONTROL OPTIMIZATION OF GUIDING THE CLOUD

This chapter describes the method used in the performance assessment evaluation. The method consists of the control strategy, which will affect the results of the optimization. This is based on model predictive control (MPC) rather than conventional rule-based control strategies. A key element of MPC is that it searches for the best control strategy using a mathematical-based model of the building. This model can be implemented with non-linear and complex interactions in multiple-input-multiple-output systems (Gyalistras et al., 2010). Other peripheral matters in conjunction with the MPC of ‘Guiding the Cloud’ are described in more detail further on in this chapter.

Model predictive control

The MPC follows the next steps:

1. **Alter the control sequence**
2. **Simulate the performance of ‘Guiding the Cloud’ using the control sequence**
3. **Select an optimized control sequence**
4. **Shift forward and update the boundary conditions and start again with step 1 until the total simulation has been executed**

The model developed to predict the DC performance influences the quality of the control sequence of the MPC. Also the optimization horizon and the control horizon length affect this performance. Further, the optimization method and objective function have an impact on the end result.

The goal of this research is to examine the potential performance of the ‘Guiding the Cloud’ concept using simulations. The disturbances that result in uncertainties in DC simulation and how to deal with these uncertainties in the MPC are discussed next. This is followed by a description of the multi-objective optimization and control strategy.

Uncertainties in DC simulation

A simulation model predicts the results of the ‘real’ model. However, these models always contain a certain level of uncertainty (Saltelli et al., 2008). These uncertainties can be categorized into three sources, namely (1) modelling uncertainties, (2) numerical uncertainties, and (3) input uncertainties (De Wit, 2001). In this research the modelling and numerical uncertainties are ignored. The input uncertainties, consisting of DC scenarios and specific parameters, are discussed next.

DC scenarios describe the boundary conditions of a simulation (e.g. IT workload, HVAC systems, climate, and net electricity generation). DC specific parameters contain uncertainties in the building properties (e.g. thermophysical material properties, infiltration rate, and heat transfer coefficients) (Hoes, 2014). It is assumed that the dominance of DC scenarios on the building simulation model predictions are significantly higher than the influence of the DC specific parameters.
Representation of the DC simulation
Modelling the actual behavior of such a DC is difficult due to unknown true parameters of the system. The behavior of a system is often examined by studying the inputs and outputs of the system. The amount and type of training data could improve the representation of the system. Therefore, it is important to analyze and quantify the training data.

Multi-objective optimization
Generally, the optimization problem consists of two (or more) conflicting objectives, for example minimizing the energy demand while maximizing thermal comfort. It is impossible to find just one best design solution for these so-called multi-objective optimization problems. Instead, a set of ‘trade-offs’ or good compromise solutions are all Pareto optimal (i.e. an increase in one objective would simultaneously lead to a decrease of the other objective).

In this research, the multi-objective optimization is based on two objectives, electricity consumption and CO$_2$ emission. At first, these objectives appear complementary rather than conflicting, because a decrease in energy should result in a lower exhaust of CO$_2$ emission. However, when IT workload is distributed to another DC due to a higher energy efficiency, it is also possible that the CO$_2$ emission increases when the other DC produces relatively more CO$_2$ in generating the net electricity.

Control strategy
The algorithm optimizes the objective values by varying possible distribution sequences. The results of the algorithm leads to a Pareto front with equally optimal distribution sequences. Since it is undesired to manually select a distribution sequence, an automatic control procedure (i.e. a decision maker) needs to be defined. The choice of this decision maker is up to the designer. The decision could be based on three types of indicators (Hoes, 2014), i.e. (1) robustness indicator, (2) robustness vector and (3) robustness balance.

The robustness indicator depends on the base case performance and the worst-case performance, where the solution depends on the base case selected and the worst-case calculated by the algorithm. The smallest indicator is most robust. The robustness vector depends on the distance from an utopian point to a solution. The length of the robustness vector is a quantified indicator of the robustness of the solution. The shortest distance is the most robust. The robustness balance depends on the angle of the robustness vector and can be added when a decision has to be made between solutions with the same robustness vector length. Also the absolute difference of both objectives can be used to select a solution, where the closest solution is most robust.

In this research, the robustness vector is applied to examine the savings potential of ‘Guiding the Cloud’, because it is independent of earlier results and user preferences.

Schematic overview
Figure 1 presents the methodology of ‘Guiding the Cloud’ to optimize the performance indicators by varying the IT workload’s distribution sequence over the different DCs.

VIRTUAL TEST ENVIRONMENT
The performance assessment methodology defined in the previous chapter is implemented in a virtual test environment. The virtual test environment contains a BES tool where the DC’s performances are simulated. The results simulated by TRNSYS are used to characterize the DC in the controller. The virtual test environment is used to investigate the performance of ‘Guiding the Cloud’.

DC performance simulation tool
The demand for building energy simulations has resulted in the development of hundreds of different building energy simulation programs over the last 50 years (Crawly et al., 2008). Each building energy simulation program has its own advantages and disadvantages.

The virtual test environment for ‘Guiding the Cloud’ is created in TRNSYS and is used to simulate the energy consumption and emission of each DC. TRNSYS has been selected due to its extensive library with pre-defined components for building models, HVAC systems and RES. In addition, TRNSYS contains the functionality to directly embed other software tools (e.g. Matlab/Simulink) in a simulation.

Controller and reference model
The controller for optimizing the total energy consumption and emission by distributing the IT workload is developed in Matlab, which provides an interactive environment and offers flexibility in high-level programming.
The controller will use reference models of the ‘real’ DCs (TRNSYS) to optimize the total energy consumption and emission by varying the IT workload distribution.

The reference models can be identified by black-box models (e.g. artificial neural networks) and detailed first principle models (e.g. BES tools). Each identification method has its own advantages and disadvantages. Due to the lower computational time, the black box model has been selected, despite its inability to extrapolate beyond its range of experience (Hoes, 2014).

Coupling of DC models and controller

To connect the DC models in TRNSYS with the controller in Matlab, an interface between the two software tools is established. Figure 2 presents a schematic representation of the virtual test environment with the important parts of the simulation.

![Figure 2: Schematic representation of the test environment consisting of the 'real' DC model (TRNSYS) and the controller (Matlab) during simulation run-time. The reference models resides inside the controller; communication inside the controller is based on Matlab scripts.](image)

Embedding TRNSYS in the controller

The reference models are based on a state space characterization, which deals with each DC with several inputs and outputs (MIMO data). The inputs consist of (1) dry bulb temperature, (2) relative humidity, (3) wind speed, (4) total horizontal radiation, and (5) IT workload. The outputs are (1) electricity consumption and (2) emission, which are the objectives to be optimized.

The simulated output of the state space model will be compared with the simulated output of the TRNSYS model. The normalized root mean square error (NRMSE) fitness value provides an indication about the goodness of the fit. The fit is calculated (in percentage) using the following formula:

\[
fit = 100 \times \left(1 - \frac{\|y - \hat{y}\|}{\|y - \bar{y}\|}\right)
\]

where \(y\) is the validation data output (i.e. output of TRNSYS) and \(\hat{y}\) is the output of the state space model (i.e. output of Matlab).

Optimization algorithm

This research performs a multi-objective optimization using the genetic algorithm from the Optimization Toolbox in Matlab. The algorithm is often applied in problems that are not suited for standard optimization algorithms.

CASE STUDY

The case study, that is described below, is used to examine the potential of ‘Guiding the Cloud’. It includes a description of the relevant DCs and IT characteristics, model assumptions, IT scenarios, and performance indicators.

Locations

Six imaginary DCs are located around the world as presented in figure 3.

![Figure 3: Locations](image)

The DCs are located in different climate and time zones. Table 1 provides an overview of the climate and time zones of each location.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>CLIMATE</th>
<th>TIME ZONE (GMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento</td>
<td>Subtropical zone</td>
<td>-8</td>
</tr>
<tr>
<td>New York</td>
<td>Moderate zone</td>
<td>-5</td>
</tr>
<tr>
<td>Madrid</td>
<td>Moderate zone</td>
<td>+1</td>
</tr>
<tr>
<td>Bergen</td>
<td>Cold zone</td>
<td>+1</td>
</tr>
<tr>
<td>New Delhi</td>
<td>Tropical zone</td>
<td>+5*</td>
</tr>
<tr>
<td>Sydney</td>
<td>Moderate zone</td>
<td>+10</td>
</tr>
</tbody>
</table>

* The time zone has been rounded from 5.5 to 5 hours.

The time zone of Madrid and Bergen is selected as reference time zone (meaning that the data for Sacramento has been shifted with -9 hours). The performance of each DC is influenced differently...
due to the various climate circumstances and time zones.

Data center characteristics
The specific DC characteristics of each DC are assumed to be identical. Each DC has a capacity of 2000 kW of IT resources available. The main difference between the DCs is the type of HVAC systems they have for cooling the IT resources. Four typical configuration of HVAC systems for DCs have been considered, these are as follows:

- Chillers
- Chillers in combination with dry coolers
- Sea water absorption cooling (SWAC)
- Indirect evaporation cooling unit (IECU)

The first three HVAC systems are combined with computairs to provide cooling in the white space, where the IT resources are located. The fourth HVAC system is an all air system to cool the white space. Table 2 presents for each location its corresponding HVAC system.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>HVAC SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento</td>
<td>Dry coolers</td>
</tr>
<tr>
<td>New York</td>
<td>IECU</td>
</tr>
<tr>
<td>Madrid</td>
<td>IECU</td>
</tr>
<tr>
<td>Bergen</td>
<td>SWAC</td>
</tr>
<tr>
<td>New Delhi</td>
<td>Chillers</td>
</tr>
<tr>
<td>Sydney</td>
<td>Chillers</td>
</tr>
</tbody>
</table>

Renewable energy systems
The DCs in this case study are equipped with RES. The type of RES for each DC is presented in table 3. The amount of power generated per hour by the RES is also provided.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>RES</th>
<th>POWER [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento</td>
<td>Bio gas turbine</td>
<td>300</td>
</tr>
<tr>
<td>New York</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madrid</td>
<td>Bio gas turbine</td>
<td>250</td>
</tr>
<tr>
<td>Bergen</td>
<td>Wind turbine, PV panels</td>
<td>P(P_{wind})P(Q_{oilar})</td>
</tr>
<tr>
<td>New Delhi</td>
<td>Bio gas turbine</td>
<td>300</td>
</tr>
<tr>
<td>Sydney</td>
<td>Bio gas turbine</td>
<td>300</td>
</tr>
</tbody>
</table>

Internal and external data distribution network
The components of a data distribution network consume electricity while processing and distributing data.

Each DC has its own internal distribution network, called a local area network (LAN), which connects the computing infrastructures and storage capacities with the outside world. The LAN components contain a host (network interface), switches, firewalls, and routers (Taal et al., 2010). The DCs are interconnected by an external dedicated distribution network, a lightpath network. This network is used to distribute the data from one location to another. When data is transported over the light path network it passes hops. Each hop contains two dense wavelength division multiplexing (DWDM) nodes. The number of hops between the DCs depends on the location. Three hops are assumed for transporting data in the same continent. An extra hop is added when data is transported to another continent. The contribution of other components, for example line amplifiers, regenerators or optical switches, are excluded from the case study, because the DWDM nodes have a significantly larger electricity consumption (Taal et al., 2010).

When IT workload crosses over to another data network, it takes time to arrive at the final destination. The transport time depends on the bandwidth and latency of the network. The bandwidth is the amount of data that can travel through a network at a time. The latency is the speed of sending IT workload from one location to another.

To analyze the potential of ‘Guiding the Cloud’ the transport time for IT workload distribution is ignored in this research.

Total physical case study
Figure 4 illustrates the complete physical case study to examine the potential of ‘Guiding the Cloud’.

Weather data
The weather data used in the simulations represent a typical meteorological year, which is based on an ‘average’ from historical data for each location. The weather data contains hourly values of different climate parameters. The weather data is manually edited to correspond with the time zones of each DC.

IT workload
Three different IT scenarios have been defined (Taal et al., 2010):

- Processing (CPU-intensive)
- Software (interactive)
- Data storage (hot and cold)

In this research, the software (interactive) scenario has been selected to examine the potential of ‘Guiding the Cloud’. Three input parameters characterize this scenario. The first is the amount of input data, the second is the CPU processing time, and the third is the output data. The CPU processing time and output data are assumed to be dependent on the input data by the following two formulas:

\[t_{CPU} = 0.001 \cdot \text{InputData}^2 + 0.17 \quad (2) \]

And

\[\text{OutputData} = 0.15 \cdot \text{InputData} + 0.10 \quad (3) \]

When IT workload is distributed from one DC to another DC, the amount of input data changes, which results in a change of the CPU processing time and output data.

The input data consists of a combination of fixed and variable IT workload. The fixed IT workload represents the IT requests that should be done locally, while the variable IT workload can be distributed among the other DCs. TRNSYS uses a predefined weekly profile of the IT workload. The IT workload of each DC is assumed to be identical. Yet, due to differences in time zones between the DCs, there are also differences in the IT workload between DCs at a certain time of a day. Figure 5 presents the IT workload daily profile for each DC.

![IT workload daily profile](image)

Figure 5 Predefined daily profile of the IT workload for each DC. The IT workload will shift in correspondence with time in the time zone.

The IT workload profile describes the internal gains of each DC. During the day the IT workload will cause a higher internal gain in the DC than in the night.

Performance indicators

The multi objective optimization considers two performance indicators, energy consumption and CO₂ emissions, that are simulated in TRNSYS for every DC of the case study. The energy consumption in a DC is simulated by a single zone model. Temperatures in the zone are controlled by the respective HVAC system. The CO₂ emissions are based on the energy consumption multiplied by a conversion factor. The conversion factors from energy consumption to CO₂ emissions are presented in Table 4.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>EMISSION [gr. CO₂ / kWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacramento</td>
<td>488</td>
</tr>
<tr>
<td>New York</td>
<td>488</td>
</tr>
<tr>
<td>Madrid</td>
<td>305</td>
</tr>
<tr>
<td>Bergen</td>
<td>246</td>
</tr>
<tr>
<td>New Delhi</td>
<td>926</td>
</tr>
<tr>
<td>Sydney</td>
<td>798</td>
</tr>
</tbody>
</table>

PERFORMANCE COMPARISON

The performance comparison consists of the following four simulation steps:

1. Gain results from the DCs using the predefined daily IT workload profile
2. Characterize state space models based on the results in the previous step
3. Integrate the state space models in the MPC, search for optimized distribution sequences and select one distribution sequence
4. Gain results from the ‘real DCs using the selected distribution sequence

In the following paragraphs, two alternatives are compared, namely the performance of the combination of DCs applying and not applying the ‘Guiding the Cloud’ concept. Also, the maximum savings of electricity consumption and CO₂ emissions will be presented.

TRNSYS model versus black-box models

It is a challenging task to characterize a blackbox model. In order to obtain a blackbox model, usually a trial-and-error process precedes. The blackbox model has been characterized by varying the number of inputs and outputs, training data and order of the state space model. The best results are obtained when different amounts of weeks in January are used for training and when various higher orders of the state space model for each DC are used. The results from the state space model are compared with the first two weeks of comparison data of the results in February from the TRNSYS model. The goodness of the fit is determined by the NRMSE. Results are presented in figure 6.

As presented, most DCs show a good fit of approximately 90% or higher. However, the estimations of the DCs’ CO₂ emissions in New York and Bergen differ significantly from an optimum fit.
Day in February

The 8th of February has been selected as the day, to examine the potential of ‘Guiding the Cloud’. Figure 7 presents the total electricity consumption based on the IT workload distribution sequence of the reference case (where ‘Guiding the Cloud’ is not applied), and the, optimization, minimum and maximum case (where ‘Guiding the Cloud’ is applied).

As presented in Figure 7 and figure 8, the optimization algorithm results in an optimization of the total electricity consumption and CO₂ emissions. Figure 8 provides an overview of the results that are obtained for the different cases in comparison to the reference case.

As presented in Figure 8, using the decision maker (coloured as yellow) for selecting the distribution strategies results in savings of the electricity consumption and CO₂ emissions with 3.0% and 15.5% respectively. Selecting the minimum values for the electricity consumption from the Pareto solutions (coloured as blue), results in a decrease of 0.6% for the total electricity consumption and a decrease of 0.7% for the total CO₂ emissions. Selecting, on the other hand, the minimum values for the CO₂ emissions from the Pareto solutions (coloured as green), results in a decrease of 17.0% in CO₂ emissions. The electricity consumption has been decreased with 2.5%.

Observeable is that applying the minimum values for the electricity consumption does not gain the maximum reduction in electricity consumption. This can be explained by selecting a distribution sequence that will influence the future distribution sequences. In this case, the influence of the decision making resulted in a negative way.

Overall, the results show that by applying ‘Guiding the Cloud’ it is possible to reduce the energy consumption and CO₂ emissions of the case study. The case study that is used in this research indicates a maximum reduction of 2.5% in total electricity consumption and 17.0% in total CO₂ emissions.

DISCUSSION

Data centers’ representation

The case study presented in this paper is based on physics-based models of 6 typical configurations of DC’s located in different climates. This case study was created to assess the potential of the ‘Guiding the Cloud’ concept. Real DCs and measurements to calibrate these models would be necessary in the future to validate this concept.

In order to improve the reliability of the result of ‘Guiding the Cloud’, the representation of the DCs in the controller should be enhanced, because this
will result in a more accurate prediction of the distribution sequences.

Multi-objective optimization

While conducting this research, a potential drawback of the genetic algorithm was detected. With this objective optimization technique, no weighing factors can be applied to emphasize more on one objective. The preferences of the user can only be implemented using the decision maker for selecting a distribution strategy.

In the case study, that was presented in this research, the ‘optimization’ case contained an unprejudiced control strategy for selecting the distribution sequence. This means that the decision maker has no clear preferences for the two objectives. However, it would be better if the decision maker considers the preferences of the user when selecting the distribution sequence.

Transport time of the IT workload distribution

The IT workload consists of a fixed and a variable IT workload. The fixed IT workload represents the just-in-time, just-in-place IT requests of customers while the variable IT workload could be distributed to another DC. However, the transport time for distributing IT workload from one DC to another DC has been ignored. This research has focused on a simple setup of the problem without bandwidth or latency constraints. Future work should include the transport time.

CONCLUSION AND FUTURE RESEARCH

In this research, the potential of distributing IT workload among geographically dispersed DCs is investigated. The main objective is to examine its (possible) effect on reducing the total energy consumption and CO₂ emissions. The preliminary results indicate that a reduction in total energy consumption and CO₂ emissions is achievable. Savings of the total electricity consumption and CO₂ emissions can be up to 3% and 17.0% respectively.

In future research, the concept presented in this research could be extended with a time delay when distributing IT workload from one DC to another. Besides the time delay, other relevant aspects can also be included, such as maximizing or setting boundaries for the reliability or minimizing the energy costs using spot pricing markets of the DCs. Another interesting concept is to combine a local and a global optimization. The local optimization will internally schedule the IT workload while the global optimization distributes the IT workload among the geographically dispersed DCs.

ACKNOWLEDGEMENT

This research was conducted as a collaboration between the Technical University of Eindhoven and Deerns Nederland B.V.

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 608826. More information about project GENiC (no. 608826) available http://projectgenic.eu/

REFERENCES

IEA. 2014. CO₂ emissions from fuel combustion.

Mills, M.P. 2013. The Cloud Begins With Coal, Big Data, Big Networks, Big Infrastructure, and Big Power.

Wit de, M.S. 2001. Uncertainty in predictions of thermal comfort in buildings, PhD thesis, Delft University of Technology, the Netherlands