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Abstract 10	

The reliability of building performance simulation (BPS) predictions is impaired by a number of 11	

uncertainties, among which occupant behavior (OB) plays a major role. Methods to relevantly 12	

model OB are essential to achieve energy-efficient and comfortable buildings. This study 13	

contributes to the ongoing discussion concerning how to model OB in BPS. Specifically, a 14	

sensitivity analysis to various aspects of OB is used to assess the impact of using different levels of 15	

modeling complexity in the conceptual design phase. A method based on the statistical Mann-16	

Whitney test is proposed to identify those aspects of OB that are influential for a performance 17	

indicator, and which might require a higher modeling complexity. Sixteen variants of an individual 18	

office constitute the case study. The results show how generalizations concerning robustness of a 19	

building typology to OB are not possible. Increasing modeling complexity does not necessarily lead 20	

to more accurate, or even to different results. 21	
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1. Introduction 1	

Building performance simulation (BPS) tools are used during building design and operation to 2	

help achieve energy efficient and comfortable buildings. However, the reliability of these tools 3	

is hindered by a number of uncertainties, such as weather and occupant behavior (OB). As such, 4	

the role of uncertainties in building performance predictions is still under active investigation 5	

(Hopfe and Hensen 2011; Rezaee et al. 2015).When it comes to uncertainty related to occupant 6	

behavior, most research efforts are directed towards: quantifying its impact (e.g., Branco et al. 7	

2004; Guerra Santin, Itard, and Visscher 2009; Lin and Hong 2013), data-mining to derive OB 8	

patterns (e.g., Duarte, Van Den Wymelenberg, and Rieger 2013; Ren, Yan, and Hong 2015; 9	

Zhao et al. 2014), and developing models to be integrated into BPS tools (e.g., Haldi and 10	

Robinson 2010; Reinhart 2004).  11	

Accurate building performance predictions are an essential prerequisite to enable the realization 12	

of concepts such as performance contracting, net-zero-energy buildings and demand side 13	

management. Thus, increasing the reliability of predictions  is crucial. The complexity of 14	

existing approaches to OB modeling can be classified according to their underlying principle as: 15	

schedules, deterministic models, non-probabilistic models (or data-driven models), stochastic or 16	

probabilistic models and agent-based stochastic models. Schedules are at the lowest end of 17	

modeling complexity, while agent-based stochastic models are at the highest. Little work has 18	

been done to provide guidelines for users of BPS tools about the most appropriate OB modeling 19	

approach for different cases.  20	

Currently, the most common approach to represent occupants and their behavior is to use fixed 21	

schedules, or hourly fractions (0 to 1) that multiply the maximum internal gains due to people’s 22	

presence, lighting loads, equipment loads, etc. 23	

This approach is unable to reflect the unpredictability and diversity of occupant behavior, and it 24	

can lead to buildings that are optimized for a standardized scenario, rather than for actual 25	
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operation. In turn, it could lead to over- or underestimations of the energy and comfort 1	

performance.  2	

Literature shows that there is a trade-off between approximation error and uncertainty due to 3	

estimation when changing model complexity (Zeigler, Kim, and Praehofer 2000). In other 4	

words, whereas complex models may offer a better approximation of reality, the trustworthiness 5	

of their predictions could be undermined by the higher number of parameters that need to be 6	

input, and which might not always be known or certain. 7	

Moreover, some building typologies are more affected by occupant behavior than others; for 8	

example, occupants will have a much more important effect on the energy and comfort 9	

performance of a cellular office with individual climate control rather than in an open plan 10	

office with central climate control. Hence, the choice of the most suitable modeling complexity 11	

should be dependent on the considered case and purpose of the simulation (Gaetani, Hoes, and 12	

Hensen 2016; Mahdavi and Tahmasebi 2016).  13	

The literature also shows general agreement with the conclusion that thermally well-insulated 14	

buildings are more sensitive to occupant behavior (Hoes et al. 2009), while only a small number 15	

of authors reach the opposite conclusion (Buso et al. 2015). While this deduction is intuitive for 16	

the influence of occupant behavior on internal gains, which play a bigger role in the indoor air 17	

heat balance of well-insulated buildings, the impact of other actions such as regulating the 18	

thermostat or operating windows and blinds is not obvious.  19	

Most available studies tend to focus on one aspect of occupant behavior only. Noteworthy 20	

studies that try to combine multiple aspects to derive a simulation framework are rare (Rysanek 21	

and Choudhary 2015; Chapman, Siebers, and Robinson 2014; Tanimoto, Hagishima, and Sagara 22	

2008). However, those that do exist tend to adopt one complexity level for all aspects of 23	

occupant behavior, without considering their relative importance. In this respect, a possible  24	

improvement could be made by determining the modeling complexity of various aspects 25	

depending on their relevance for the results.  26	
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The goal of this paper is to contribute to a better understanding of the appropriate use of 1	

occupant behavior models. The longer-term aim is to develop a fit-for-purpose occupant 2	

behavior modeling (FFP-OBm) strategy that can aid simulation users to select the right 3	

complexity level in relation to the considered case and the objective of the simulation. One of 4	

the hypotheses underlying the FFP-OBm approach is that different aspects of occupant behavior 5	

have a dissimilar influence on the performance indicators (PI) of different buildings (see Fig. 1): 6	

non-influential aspects should not be modeled with the same modeling complexity as influential 7	

ones. There is hence a need for a method that can separate influential and non-influential 8	

aspects.  9	

While this concept was introduced earlier (Gaetani, Hoes, and Hensen 2016), the value of the 10	

present study is that it offers a practical method to separate influential and non-influential 11	

aspects, and it demonstrates the validity of the hypothesis.  12	

 13	

 14	

Fig. 1: High-level overview of the fit-for-purpose occupant behavior modeling (FFP-OBm) 15	
strategy 16	

 17	

Section 2 outlines the method used to distinguish between influential and non-influential aspects 18	

of occupant behavior. Section 3 describes the case study. Section 4 presents the results of the 19	

application of  diversity patterns on the selected performance indicators. Section 5 demonstrates 20	

how results are more or less sensitive to different aspects of occupant behavior depending on 21	

building, climate, performance indicator and building use scenario. In Section 6, two building 22	
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variants that differ in sensitivity to light, window and blind use are selected to investigate the 1	

effect of increasing modeling complexity for both influential and non-influential aspects of 2	

occupant behavior. The results are discussed in Section 7. 3	

 4	

2. Methodology 5	

The current study proposes a method to quantify the sensitivity of results to different aspects of 6	

occupant behavior and to distinguish influential from non-influential aspects. The overall 7	

hypothesis is that a higher modeling complexity might be needed for the influential aspects of 8	

occupant behavior. As the influential aspects supposedly depend on the building, climate, 9	

purpose of simulation (performance indicator) and use scenario, this hypothesis highlights how 10	

the appropriate modeling complexity might be derived from the object – and objective – of the 11	

simulation. 12	

We propose to use the statistical Mann-Whitney U test to determine whether an aspect of 13	

occupant behavior is relevant for the results. The Mann-Whitney U test is a nonparametric test 14	

which is used to assess whether two independent groups are significantly different from each 15	

other. Its strength in comparison to sensitivity analysis methods that are traditionally used in 16	

BPS (Tian 2013), is that this test is able to process correlated and non-correlated inputs, whose 17	

variation is not a uniform or normal distribution. In practice, the test helps to quantify the 18	

influence on the results of an aspect of OB. The proposed method is tested using a case study. 19	

First, the case study and the purpose of the simulation in terms of performance indicators are 20	

defined (Section 3). The case study consists of 16 building variants for which the uncertain 21	

aspects of occupant behavior are modeled by means of diversity patterns. 22	

Secondly, the performance of the building variants is assessed using the diversity patterns 23	

(Section 4).  24	

Then, if the range in the performance indicator shows a visible effect of occupant behavior due 25	

to the patterns, a sensitivity analysis takes place to identify the influential aspects of OB 26	
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(Section 5). This step allows relevance to be ascribed only to those aspects that truly affect the 1	

results for a specific case, and is achieved by means of the statistical Mann-Whitney U test. 2	

Here, the two groups are characterized by all combinations with the same pattern for an 3	

uncertain aspect of OB. In particular, all results characterized by a certain type of occupant 4	

behavior, referred to as pattern A, are compared with those with the same type of behavior 5	

referred to as pattern B (see Section 3.2). There is a statistically significant influence of the 6	

behavior on the results if the statistical p value < 0.05. The sensitivity analysis allows the 7	

identification of those aspects of occupant behavior that are responsible for the spread in the 8	

results, so that more attention can be directed to such aspects.  9	

Finally, a higher modeling complexity is applied to the influential and non-influential aspects 10	

for two building variants, to test the effect of changing modeling complexity for aspects of 11	

occupant behavior which showed a different sensitivity (Section 6).  12	

The applicability of the proposed method, based on the statistical Mann-Whitney U test, is 13	

discussed in Section 7. 14	

 15	

3. Case study description 16	

Different buildings, climates, purposes of simulation and use scenarios are defined to verify the 17	

hypothesis that various aspects of occupant behavior are influential in different cases, and hence 18	

the appropriate occupant behavior modeling complexity depends on the object – and objective – 19	

of the simulation. As for the phases in the building lifecycle, this study investigates the 20	

conceptual design phase only, when no data about the actual building performance is available. 21	

The sole purpose of formulating the building variants is to create a spectrum of different cases 22	

to be investigated by means of the methodology presented here. The buildings’ characteristics, 23	

as well as the choice of climates, will necessarily have an impact on the sensitivity of the results 24	

to certain aspects of occupant behavior. For example, the relatively small openable window 25	

fraction may result in a lower-than-expected sensitivity to window use. However, this paper 26	
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aims at proposing a methodology rather than at drawing conclusions about the comparative 1	

importance of various aspects of occupant behavior. 2	

 3	

3.1 Characteristics of the investigated building variants 4	

A testbed made of 16 different variants of a cubicle office is defined using EnergyPlus v8.3. 5	

The office dimensions are 553 m3, and the south-facing wall faces outside, while all other 6	

walls, ceiling and floor are assumed to be adiabatic, as if the office was surrounded by other 7	

cubicles in thermal equilibrium with it. An operable window equipped with an external shading 8	

device is placed on the external wall. Two climates are considered: Amsterdam, the 9	

Netherlands, and Rome, Italy. Two variations of window-to-wall ratio (WWR) are defined, 10	

namely 40% and 80%. The fraction of window that can actually open is set as 10% of the total 11	

window area, which corresponds to 0.6 m2 for WWR=40% and 1.2 m2 for WWR=80%. The 12	

other variations concern the power density of lights and equipment, and the construction of wall 13	

and window, for a total of 16 building variants (see Table 1). Heating and cooling are provided 14	

by means of an ideal system, whose size has been capped based on the results of preliminary 15	

simulation runs.  16	

 17	

Table 1: Characteristics of the investigated building variants 18	
   Thermal insulation Power Density 

Building 
ID 

Climate 
WWR 

[%] 

Wall R-
value 

[m2K/W] 

Window U-
value 

[W/m2K] 

g-
value 

[-] 

Visual 
Transmittance 

[-] 

Lights 
[W/m2] 

Equipment 
[W/m2] 

1 Amsterdam 40 4 1.1 0.29 0.48 15 10 
2 Amsterdam 40 4 1.1 0.29 0.48 5 3 
3 Amsterdam 40 1.3 3 0.73 0.75 15 10 
4 Amsterdam 40 1.3 3 0.73 0.75 5 3 
5 Amsterdam 80 4 1.1 0.29 0.48 15 10 
6 Amsterdam 80 4 1.1 0.29 0.48 5 3 
7 Amsterdam 80 1.3 3 0.73 0.75 15 10 
8 Amsterdam 80 1.3 3 0.73 0.75 5 3 
9 Rome 40 4 1.1 0.29 0.48 15 10 
10 Rome 40 4 1.1 0.29 0.48 5 3 
11 Rome 40 1.3 3 0.73 0.75 15 10 
12 Rome 40 1.3 3 0.73 0.75 5 3 
13 Rome 80 4 1.1 0.29 0.48 15 10 
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14 Rome 80 4 1.1 0.29 0.48 5 3 
15 Rome 80 1.3 3 0.73 0.75 15 10 
16 Rome 80 1.3 3 0.73 0.75 5 3 
 1	

 2	
3.2 Definition of diversity patterns 3	

A number of aspects related to occupant behavior were assumed to be uncertain, namely: 4	

occupants’ presence, HVAC use, equipment and light use, heating and cooling setpoint, blind 5	

and window use. For these aspects, diversity patterns were defined as in Table 2. Most of the 6	

variations are as in (Hong and Lin 2012). Clearly, the assumptions made in formulating the 7	

diversity patterns will have a great impact on the results of the sensitivity analysis, as further 8	

clarified in Section 7. Where possible, the user of this methodology should corroborate his/her 9	

assumptions with data, so that the diversity patterns are representative for possible variations of 10	

occupant behavior. In this case, the scope of implementing diversity patterns is to investigate 11	

the sensitivity of different building variants to standardized variations in occupant behavior. 12	

 13	

Table 2: Diversity patterns for uncertain aspects of occupant behavior 14	
Type of behavior Pattern A Pattern B 

Presence 
Mon-Fri 10-12 am and 1-4 

pm 
Mon-Fri 8-12 am and 1-6 

pm 

HVAC use ON when occupied 
Always ON with Tsetback 
(15.6°C when heating, 
26.7°C when cooling) 

Equipment use 
90% when occupied; 30% 

when non-occupied 
 

100% 10am-4pm or 8am-
6pm according to 

presence; 60% before 
arrival and after departure 

Light use 
ON when occupied; 

daylight control 

ON when occupied + 
lunch break; no 

daylighting control 
Heating setpoint 

[°C] 
18 23 

Cooling setpoint 
[°C] 

22 26 

Blind use Always open 
Close if occupied, cooling 
and high solar on window 

Window use Always closed 
Open if occupied, Tin > 

Tsp, cooling and ΔTin-out > 2°C 

 15	
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The diversity patterns are not implemented one-at-a-time in the simulation model, but rather in 1	

all possible combinations of patterns A and patterns B. Doing so leads to a total number of 28 = 2	

256 scenarios – 64 scenarios where Tsp,heating > Tsp,cooling = 192 scenarios. It should be noted that 3	

occupants’ presence is not only considered in terms of internal gains due to occupancy, but also 4	

acts as a trigger for most other adaptive actions (see Table 2). 5	

 6	

3.3 Definition of performance indicators  7	

Heating and cooling energy and weighted overheating hours are the selected performance 8	

indicators.  9	

Weighted overheating hours (WOH [h]) are calculated with the simplified formula 10	

WOH  hi  (Top Tmax )  0
i1

n

  11	

where h is the number of occupied hours, Top is the operative temperature [°C] and Tmax is the 12	

maximum allowed temperature. Tmax is here assumed to be 28°C, corresponding to Class D 13	

temperature summer limits in actively cooled buildings (Boerstra, van Hoof, and van Weele 14	

2015). For comfort-related performance indicators, a maximum acceptable value is typically 15	

defined. A threshold of 500 h is taken for illustrative purposes. The order of magnitude of this 16	

figure is based on the daily limits for weighted exceedance. According to (CIBSE 2013), the 17	

number of WOH shall be less than or equal to 6 in any one day in the cooling season, or equal 18	

to 109 (weekdays May 1st – September 30th) 6 = 654 h. It is supposed that when no-adaptive 19	

Tmax are considered, as in the case of active cooling, the limit should be more stringent.  20	

 21	

4. Case study results: Impact of diversity patterns on performance indicators 22	

The impact of occupant behavior diversity patterns is evaluated for the aforementioned 23	

performance indicators and building variants. This intermediate step is taken to establish 24	

whether occupant behavior as a whole has an effect on the performance indicators. In cases 25	
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where the effect of occupant behavior is negligible, it is assumed that there is no point in 1	

modeling it with further detail. Instead, in cases where there is a visible effect of occupant 2	

behavior, sensitivity analysis is undertaken. Fig. 2 shows the range of cooling energy use due to 3	

occupant behavior. A significant variation in all building variants can be seen. Ultimately, it will 4	

depend on the purpose of the simulation whether a given variation is considered acceptable or 5	

not. 6	

 7	

Fig. 2: Variation in cooling energy use due to diversity patterns for uncertain aspects of 8	
occupant behavior in building variants 1-16 (see Table 1) 9	

 10	

Fig. 3 represents the impact of occupant behavior on heating energy use. For all building 11	

variants located in Rome (9 to 16), the heating energy demand is lower than 10 kWh/m2y 12	

regardless of occupant behavior. Depending on the purpose of the simulation, the relative 13	

variation may be considered important or not. In this example we consider all building variants 14	

to be sensitive to occupant behavior.  15	
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 1	

Fig. 3: Variation in heating energy use due to high/low patterns for uncertain aspects of 2	
occupant behavior 3	

 4	
 5	

An analysis of the impact of occupant behavior on weighted overheating hours (Fig. 4) reveals 6	

that all buildings located in Rome, and two buildings located in Amsterdam (building 7 and 8, 7	

characterized by WWR=80% and low thermal insulation) exceed the threshold of 500 h. 8	

 9	

Fig. 4: Variation in weighted overheating hours due to high/low patterns for uncertain aspects 10	
of occupant behavior 11	
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 1	

In summary, we assume that the effect of occupant behavior on results needs to be further 2	

examined for: cooling energy in all buildings, heating energy in all buildings, and WOH for 3	

buildings 7, 8 and 9 – 16. For these cases, a sensitivity analysis with the Mann-Whitney U test 4	

is applied to determine which aspects of occupant behavior are statistically significant for the 5	

results. 6	

 7	

5. Case study results: Sensitivity analysis to occupant behavior 8	

5.1 Sensitivity analysis of cooling energy use to occupant behavior 9	

As expected, the results of the Mann-Whitney U test show that cooling energy use depends on 10	

the HVAC use for all building variants, and does not depend on the heating setpoint temperature 11	

in any of the building variants. The results for all types of behavior are shown in Fig. 5. 12	

Only buildings 4, 8 and 16 (variants with low thermal insulation and low power density for both 13	

Amsterdam and Rome WWR=80%) are not influenced by occupants’ presence. This result can 14	

be explained as the cooling demand of such variants is highly dependent on solar heat gains and 15	

thermal exchange through the building envelope. Internal heat gains – which depend on 16	

presence – are relatively less important. 17	

In contrast, equipment use is only relevant for the results in building variants 1 and 9, 18	

characterized by low WWR, high thermal insulation and high PD. 19	

The results are relatively more sensitive to light use than equipment use due to the higher power 20	

density of lights, with only 4 variants (4, 8, 14 and 16) not being affected by this aspect of 21	

occupant behavior. 22	

According to expectations, the cooling temperature setpoint is a decisive factor when it comes 23	

to cooling energy use in almost all buildings. The only building variant which is not sensitive is 24	

variant 15, located in Rome, with high WWR, low insulation and high power density.  25	
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As expected, higher WWR are more affected by window opening due to the larger opening area. 1	

The only building variant with WWR 40% which shows sensitivity to window use is variant 11, 2	

characterized by low thermal isolation and high PD in Rome. As for the sensitivity to blind use, 3	

the only building variants which are not affected are 1 and 9, both characterized by low WWR, 4	

high thermal insulation and high power density. In these variants the windows are characterized 5	

by a very low solar heat gain coefficient (SHGC), which weakens the effect of blinds. The use 6	

of blinds is shown to have a greater effect on building variants characterized by higher SHGC.  7	

 8	

 9	

 10	
Fig. 5: Sensitivity of cooling energy use to various occupant behavior aspects for all building 11	

variants; building variants with 1-p>0.95 are considered sensitive (black-filled bars) 12	
 13	

5.2 Sensitivity analysis of heating energy to occupant behavior 14	
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The sensitivity analysis of heating energy use to occupant behavior for building variants 1 – 16 1	

shows that all variants are sensitive to heating setpoint and HVAC use. Building variants 1 and 2	

8 are sensitive to occupant’s presence. Building variant 1 (low WWR, high thermal insulation, 3	

high PD) is sensitive to equipment use. Variants 1 – 3, 5, 7 and 9 – 15 are sensitive to light use, 4	

confirming the hypothesis that the energy consumption of variants with low thermal insulation 5	

and low PD is less affected by internal gains. Building variants 13 – 15, characterized by high 6	

WWR in Rome are affected by cooling setpoint. Window use is non-influential for heating 7	

energy in all buildings but variant 13, located in Rome with high WWR, well-insulated 8	

envelope and high PD. Building variants 4, 7 and 8 (all characterized by high SHGC) are 9	

sensitive to blind use.  10	

 11	

Fig. 6: Sensitivity of heating energy use to various occupant behavior aspects for all building 12	
variants 13	

 14	

 15	
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5.3 Sensitivity analysis of weighted overheating hours (WOH) to occupant behavior 1	

Only building variants 7, 8 and 9 to 16 were within the scope of the sensitivity analysis, as for 2	

all other variants it was assumed that the influence of occupant behavior did not cause reaching 3	

the assumed threshold. For WOH, no building variant is sensitive to heating setpoint 4	

temperature or equipment use. Instead, all building variants are sensitive to HVAC use. 5	

Building 9, 10, 12, 14 and 16 are sensitive to occupants’ presence. Building variants 11 and 13 6	

are sensitive to light use. The cooling temperature setpoint significantly affects the WOH only 7	

for building variants characterized by high thermal insulation in Rome, WWR=80%, while 8	

blind use is relevant for all variants with low thermal insulation. Building variants 7, 11, 12, 13, 9	

15 and 16 are sensitive to window use when it comes to overheating hours. 10	

 11	

 12	

Fig. 7: Sensitivity of weighted overheating hours (WOH) to various occupant behavior aspects 13	
for building variants 7 – 16  14	

 15	
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6. Case study results: Increasing model complexity to stochastic models 1	

Only the cooling energy of two building variants and three adaptive behaviors (light, blind and 2	

window operation) have been selected to test the effect on the results of applying a higher 3	

modeling complexity for different aspects of OB. Building variants 1 and 16 are chosen as they 4	

show a different sensitivity of cooling energy use to light use, window use and blind use (see 5	

Fig. 5). The hypothesis is that the non-influential aspects of occupant behavior can be modeled 6	

with the lowest complexity, while adding complexity to the influential aspects will give further 7	

insights into the performance indicator, if compared with the simplistic diversity patterns. 8	

Instead of applying a higher modeling complexity only to the aspects of occupant behavior that 9	

are influential for the given performance indicator/building variant combination, the effect of 10	

performing such an operation on the distribution of the cooling energy is investigated for both 11	

considered building variants. There are two main reasons for applying higher complexity 12	

models to both variants rather than only to the sensitive one: i) to test whether the Mann-13	

Whitney U test leads to reliable results, that is to verify that changing modeling complexity of a 14	

non-influential aspect does not have an impact on the performance indicator; ii) to inspect 15	

existing interrelations among aspects of occupant behavior (i.e., to understand whether a non-16	

influential aspect of occupant behavior can be ignored when adding complexity).  17	

A higher modeling complexity is firstly implemented for each aspect of occupant behavior one-18	

at-the-time, and then simultaneously to investigate possible interrelations between the various 19	

aspects. It has to be noted that the initial number of scenarios due to the combinations of 20	

diversity patterns for all uncertain aspects of occupant behavior changes when performing this 21	

operation. In fact, if one aspect is modeled stochastically, the number of scenarios reduces from 22	

192 to 96. If two aspects are modeled by means of a stochastic model, the resulting number of 23	

scenarios is 48, while if all three considered aspects are modeled in this way, there will be only 24	

24 scenarios. 25	
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The implemented occupant behavior models are well-established stochastic models taken from 1	

literature: Reinhart’s Lightswitch-2002 model (Reinhart 2004), Haldi and Robinson’s window 2	

operation model (Haldi and Robinson 2009), and Haldi and Robinson’s blind operation model 3	

(Haldi and Robinson 2010). These models were developed for cellular offices in climates 4	

different than those considered in the case study, and there is no evidence that their combined 5	

use leads to representative results. However, they have been widely used in conjunction and for 6	

a number of buildings and climates (Gunay, O’Brien, and Beausoleil-Morrison 2016; Gilani et 7	

al. 2016) and represent the current state-of-the-art in OB modeling research. The occupant 8	

behavior models are here implemented in the building model by means of the EMS feature of 9	

EnergyPlus, as in Gunay, O’Brien, and Beausoleil-Morrison 2015. The models have been run an 10	

appropriate number of times to take their stochasticity into account. A detailed description of 11	

the method used to determine the minimum number of runs is out of the scope of the research 12	

presented here.  13	

 14	

6.1 Implementation of stochastic models to building variant 1 15	

The cooling energy of building variant 1 is shown to be sensitive to light use, while it is not 16	

sensitive to window use or blind use (see Fig. 5). Modeling light use by means of Reinhart’s 17	

Lightswitch-2002 model causes the distribution in the results to change radically. As expected, 18	

adding modeling complexity to the other considered aspects of occupant behavior leads to 19	

negligible differences in the results. Combinations of aspects have been considered to 20	

investigate the interactions among behavior; while some effect is noticeable, for the case under 21	

investigation, modeling the lights’ operation alone causes the greatest variation.  22	
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  1	

Fig. 8: Effect of implementing stochastic models for lighting (L), blind (B) and window (W) use 2	
on the cooling energy of building variant 1   3	

 4	

6.2 Implementation of stochastic models to building variant 16 5	

The Mann-Whitney U test identified the cooling energy of building variant 16 as dependent on 6	

blind and window operation, while the results are not sensitive to light operation (see Fig. 5). 7	

Fig. 9 shows how applying a stochastic model to windows and blinds leads to a great variation 8	

of the performance indicator. Adding further modeling complexity to the light use has a 9	

marginal influence on the results. Fig. 9 also shows how adding modeling complexity to 10	

different influential aspects of occupant behavior has a diverse impact on the variation of the 11	

performance indicator. In this case, the blind operation model has a much stronger impact than 12	

the window operation model. This result could be due to the fact that the patterns already gave a 13	

similar representation of window operation to the one obtained by means of the stochastic 14	

model. Another plausible explanation is that, in spite of both aspects being classified as 15	

“influential” in the Mann-Whitney U test, blind operation has a stronger influence on the 16	

cooling energy.  17	
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  1	

Fig. 9: Effect of implementing stochastic models for lighting (L), blind (B) and window (W) use 2	
on the cooling energy of building variant 16   3	

 4	

7. Discussion 5	

The results in Section 4 confirm that different buildings and performance indicators show a 6	

dissimilar sensitivity to occupant behavior. The Mann-Whitney U test (Section 5) proved to be a 7	

suitable method to determine the aspects of occupant behavior that are influential for the results. 8	

In the considered case, all performance indicators were sensitive to HVAC use. The sensitivity 9	

to all other aspects of occupant behavior changed according to building variant and performance 10	

indicator. Generally speaking, blind use appeared to be more relevant in buildings with high 11	

SHGC for all performance indicators. Light and equipment use had a greater effect for buildings 12	

with a use scenario characterized by higher power density. Building variants with bigger 13	

window areas are more sensitive to window use. Although macro-trends are visible, it would 14	

have been impossible to establish a priori which aspects of occupant behavior are influential for 15	

the results. The current methodology is proposed to separate influential and non-influential 16	

aspects of occupant behavior for any case study at hand. An analysis of different climates and 17	
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building variants is expected to lead to a diverse sensitivity of the performance indicators to 1	

various occupant behavior aspects. 2	

In Section 6 the effect of applying a higher modeling complexity on the range of cooling energy 3	

use was investigated both for influential and non-influential aspects. Fig. 8 and Fig. 9 clearly 4	

show the ineffectiveness of increasing the modeling complexity of non-influential aspects of 5	

occupant behavior.  6	

This paper makes a number of simplifications that ought to be pointed out.  7	

Firstly, the results of the sensitivity analysis strictly depend on the definition of diversity 8	

patterns, which should represent a plausible spectrum of the uncertainty of the considered aspect 9	

of OB. For example, all results were sensitive to HVAC use as there was a fundamental 10	

difference between Pattern A, in which the system is switched off when the building is 11	

unoccupied, and Pattern B, where the system is always on and a setback temperature is used. 12	

Moreover, the modeled triggering conditions for window opening in this case is Open if 13	

occupied, Tin > Tsp, cooling and ΔTin-out > 2°C (Table 2). This assumption may be valid for office 14	

buildings, where window opening behavior is mainly influenced by thermal discomfort (Haldi 15	

and Robinson 2009). However, it precludes de facto the sensitivity of energy-related 16	

performance indicators to window operation in the heating season (Fig. 5). The user of this 17	

method should be aware of the realistic spectrum of uncertainty in his/her case, to ensure that 18	

the modeling assumptions do not inhibit the significance of the results. 19	

Secondly, as the diversity patterns are implemented in the form of schedules or deterministic 20	

built-in software functions, it was stated that implementing stochastic models is equivalent to 21	

increasing modeling complexity. While this is certainly true, in reality, modeling complexity is 22	

continuous rather than discrete, as a category (e.g., stochastic models) can be characterized by 23	

different complexities according to the model’s size and resolution (Gaetani, Hoes, and Hensen 24	

2016). 25	
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Thirdly, while the scientific community agrees that fixed schedules may not be representative of 1	

actual behaviors, it has not reached agreement concerning higher modeling complexity. Hence, 2	

while it is reasonable to state that higher complexity models offer a better approximation of 3	

reality, it is not yet proven that their predictions indeed lead to more realistic results (e.g., 4	

Mahdavi and Tahmasebi 2015b). The reliability of such models in this context is subject to the 5	

evaluation and validation process undertaken by the single models.  6	

Finally, selecting the fit-for-purpose model is not only about modeling complexity. In fact, 7	

different models have been developed for different building typologies, climates, performance 8	

indicators etc. If there is no evident match between the investigated case and the available 9	

models, all suitable models of a given complexity should be implemented.  10	

As pointed out in the introduction, this study represents an important step towards achieving a 11	

FFP-OBm strategy. The strategy aims to support the simulation user in the selection of the 12	

appropriate modeling approach for occupant behavior. Further research is being devoted to 13	

quantifying the trade-off between estimation uncertainty and approximation error. Moreover, 14	

while this study is performed on a single zone, in the future the whole building will be taken 15	

into account. Other phases in the building lifecycle such as detailed design or operation also 16	

ought to be considered to verify that the FFP-OBm indeed leads to efficient decision making 17	

and improved modeling predictive ability. 18	

 19	

8. Conclusion 20	

A practical approach to identify the most influential aspects of occupant behavior was 21	

introduced and tested in the conceptual design phase for 8 building variants of a cellular office 22	

in Amsterdam and Rome using EnergyPlus v8.3. The Mann-Whitney U test proved to be a 23	

suitable statistical method to perform a sensitivity analysis in this context. The results 24	

highlighted how different buildings and performance indicators are influenced by the various 25	

aspects of occupant behavior in a dissimilar way. A deeper analysis of two building variants 26	
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confirmed the findings of the Mann-Whitney U test. In fact, increasing the modeling complexity 1	

of aspects of occupant behavior that appear to be non-influential for the results has a marginal 2	

influence on the distribution of the performance indicator. It can be concluded that, for the 3	

investigated case, adding modeling complexity to those aspects of OB that the Mann-Whitney U 4	

test identified as non-influential might be an unnecessary time expenditure, depending on the 5	

purpose of the simulation. In cases where higher accuracy of the results is required, it might be 6	

necessary to model all aspects of OB that could be interrelated. Indeed, a small effect of such 7	

interrelation is visible, but is negligible if compared to the effects obtained by changing the 8	

modeling complexity of the influential aspects.  9	

 10	
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