Effective building performance simulation can reduce the environmental impact of the built environment, improve indoor quality and productivity, and facilitate future innovation and technological progress in construction. It draws on many disciplines, including physics, mathematics, material science, biophysics, human behavioural, environmental and computational sciences. The discipline itself is continuously evolving and maturing, and improvements in model robustness and fidelity are constantly being made. This has sparked a new agenda focusing on the effectiveness of simulation in building life cycle processes.

Building Performance Simulation for Design and Operation begins with an introduction to the concepts of performance indicators and targets, followed by a discussion on the role of building simulation in performance based building design and operation. This sets the ground for in-depth discussion of performance prediction for energy demand, indoor environmental quality (including thermal, visual, indoor air quality and moisture phenomena), HVAC and renewable system performance, urban level modelling, building operational optimization and automation.

Produced in cooperation with the International Building Performance Simulation Association (IBPSA), this book provides a unique and comprehensive overview of building performance simulation for the complete building life-cycle from conception to demolition. It is primarily intended for advanced students in building services engineering, and in architectural, environmental or mechanical engineering; and will be useful for building and systems designers and operators.
Building Performance Simulation for Design and Operation

Edited by Jan L.M. Hensen and Roberto Lamberts
Contents

<table>
<thead>
<tr>
<th>List of figures</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>xv</td>
</tr>
<tr>
<td>List of contributors</td>
<td>xvii</td>
</tr>
<tr>
<td>Foreword</td>
<td>xx</td>
</tr>
<tr>
<td>JOE CLARKE</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 Introduction to building performance simulation

JAN L.M. HENSEN AND ROBERTO LAMBERTS

1

2 The role of simulation in performance based building

GODFRIED AUGENBROE

15

3 Weather data for building performance simulation

CHARLES S. BARNABY AND DRURY B. CRAWLEY

37

4 People in building performance simulation

ARDESHIR MAHDAVI

56

5 Thermal load and energy performance prediction

JEFFREY D. SPITLER

84

6 Ventilation performance prediction

JELENA SREBRIC

143

7 Indoor thermal quality performance prediction

CHRISTOPH VAN TREECK

180

8 Room acoustics performance prediction

ARDESHIR MAHDAVI

218

9 Daylight performance predictions

CHRISTOPH REINHART

235

10 Moisture phenomena in whole building performance prediction

JAN CARMELIET, BERT BLOCKEN, THIJS DEFRAYE AND DOMINIQUE DEROME

277

11 HVAC systems performance prediction

JONATHAN WRIGHT

312
Contents

12 Micro-cogeneration system performance prediction 341
IAN BEAUSOLEIL-MORRISON

13 Building simulation for practical operational optimization 365
DAVID E. CLARIDGE

14 Building simulation in building automation systems 402
GREGOR P. HENZE AND CHRISTIAN NEUMANN

15 Integrated resource flow modelling of the urban built environment 441
DARREN ROBINSON

16 Building simulation for policy support 469
DRURY B. CRAWLEY

17 A view on future building system modeling and simulation 481
MICHAEL WETTER

Index 505
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Dynamic interactions of sub-systems in buildings</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Virginia Tech Lumenhaus</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Deutsche Bank headquarters in Frankfurt am Main during refurbishment</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Technology hype cycle for building performance simulation</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Current use of performance simulation in practical building design</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Output visualization of adaptive thermal comfort predictions for a medium-heavy office building</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>Sample airflow and cooling load simulation results for an office development</td>
<td>7</td>
</tr>
<tr>
<td>1.8</td>
<td>Sample comfort, cooling load and energy simulation results for a low-energy office building</td>
<td>8</td>
</tr>
<tr>
<td>1.9</td>
<td>Attitude and expectations regarding simulation tools</td>
<td>9</td>
</tr>
<tr>
<td>1.10</td>
<td>Variability in predicted gas use for space heating</td>
<td>10</td>
</tr>
<tr>
<td>1.11</td>
<td>Potential error in performance prediction vs. model complexity/level of detail</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Performance testing requires a (virtual) experiment</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Top-down functional decomposition and bottom-up assembly of building systems</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Relationship among concepts in the performance approach</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Aspects systems are performance criterion specific aggregations over technical systems</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Deterministic versus probabilistic performance outcomes</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Aspect systems</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Normalized results</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Aspect systems</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Normalized results</td>
<td>29</td>
</tr>
<tr>
<td>2.10</td>
<td>Aspect systems</td>
<td>30</td>
</tr>
<tr>
<td>2.11</td>
<td>Normalized results</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>One minute temperature, wind, and solar radiation observations</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Example TMY3 format data</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>Cumulative distribution functions for June global horizontal solar radiation</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>End-use energy predictions for 550-m² office building</td>
<td>44</td>
</tr>
<tr>
<td>3.5</td>
<td>World Radiation Data Center measured daily global radiation vs. modeled</td>
<td>45</td>
</tr>
<tr>
<td>3.7</td>
<td>Change in annual average temperature relative to 1990 as predicted by several GCM models</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Heat transfer rate of human body as a function of activity and the ambient (operative) temperature</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>Measured reverberation times in a concert hall under empty and occupied conditions</td>
<td>59</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.3</td>
<td>Example of an occupancy load model as adapted in a commercially available simulation application</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Probability of switching the lights on at arrival in the office</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Percentage of blinds closed for SSW façade in relation to the vertical solar irradiance</td>
<td>62</td>
</tr>
<tr>
<td>4.6</td>
<td>Mean occupancy level for a reference work day in VC, ET, FH, UT, and HB</td>
<td>65</td>
</tr>
<tr>
<td>4.7</td>
<td>Observed occupancy levels in seven different offices in FH for a reference work day</td>
<td>66</td>
</tr>
<tr>
<td>4.8</td>
<td>Mean and standard deviation of occupancy for a reference work day in UT</td>
<td>66</td>
</tr>
<tr>
<td>4.9</td>
<td>Lighting operation in VC, FH, UT, and HB offices for a reference work day</td>
<td>67</td>
</tr>
<tr>
<td>4.10</td>
<td>Lighting operation in relation to mean occupancy</td>
<td>67</td>
</tr>
<tr>
<td>4.11</td>
<td>Mean effective electrical lighting power in UT averaged for all zones plotted against external global horizontal irradiance</td>
<td>68</td>
</tr>
<tr>
<td>4.12</td>
<td>Probability of switching the lights on upon arrival in the office</td>
<td>69</td>
</tr>
<tr>
<td>4.13</td>
<td>Normalized relative frequency of “switch on” actions in UT as a function of ceiling illuminance</td>
<td>69</td>
</tr>
<tr>
<td>4.14</td>
<td>Normalized relative frequency of “switch on” actions as a function of vertical illuminance</td>
<td>70</td>
</tr>
<tr>
<td>4.15</td>
<td>Probability of switching the lights off as a function of the duration of absence from the offices in VC, FH, and HB</td>
<td>70</td>
</tr>
<tr>
<td>4.16</td>
<td>Mean shade deployment degree as a function of global vertical irradiance incident on the façade</td>
<td>71</td>
</tr>
<tr>
<td>4.17</td>
<td>Normalized relative frequency of opening and closing actions over the course a reference day</td>
<td>72</td>
</tr>
<tr>
<td>4.18</td>
<td>Normalized relative frequency of opening and closing windows as a function of indoor temperature</td>
<td>72</td>
</tr>
<tr>
<td>4.19</td>
<td>Normalized relative frequency of opening and closing windows as a function of outdoor temperature</td>
<td>73</td>
</tr>
<tr>
<td>4.20</td>
<td>Relative frequency of window opening and closing actions as a function of the difference between indoor air temperature and neutrality temperature</td>
<td>73</td>
</tr>
<tr>
<td>4.21</td>
<td>Probability of opening the windows upon arrival in the office and closing windows upon leaving the office as a function of indoor temperature</td>
<td>74</td>
</tr>
<tr>
<td>4.22</td>
<td>State of windows plotted against indoor temperature</td>
<td>75</td>
</tr>
<tr>
<td>4.23</td>
<td>State of windows plotted against outdoor temperature</td>
<td>75</td>
</tr>
<tr>
<td>4.24</td>
<td>State of windows as a function of the difference between indoor air temperature and neutrality temperature</td>
<td>76</td>
</tr>
<tr>
<td>4.25</td>
<td>Proposed mean occupancy input model for building performance simulation applications</td>
<td>77</td>
</tr>
<tr>
<td>4.26</td>
<td>Proposed light switch on probability model</td>
<td>77</td>
</tr>
<tr>
<td>4.27</td>
<td>Proposed light switch off probability model</td>
<td>78</td>
</tr>
<tr>
<td>4.28</td>
<td>Proposed dependency model of shades deployment level</td>
<td>78</td>
</tr>
<tr>
<td>4.29</td>
<td>Comparison of the general shade deployment model’s predictions</td>
<td>79</td>
</tr>
<tr>
<td>4.30</td>
<td>Schematic illustration of multiple-coupled models for occupancy, building, and context</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>A single-layer plane wall</td>
<td>86</td>
</tr>
<tr>
<td>5.2</td>
<td>A multi-layer wall</td>
<td>87</td>
</tr>
<tr>
<td>5.3</td>
<td>Multi-layer wall analysis based on electrical analogy</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Electrical analogy with distributed thermal capacitance</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of transient and quasi-steady-state conduction heat gain calculations</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>South-facing zone</td>
<td>112</td>
</tr>
<tr>
<td>5.7</td>
<td>Opaque surface heat balance</td>
<td>114</td>
</tr>
<tr>
<td>5.8</td>
<td>Exterior surface steady-state heat balance</td>
<td>115</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.9</td>
<td>Heat balance for a double-pane window</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Lighting heat gain and the resulting cooling load for a conference room</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>(a) Four-storey office building and (b) a representation of the first floor in a multi-zone airflow network simulation tool</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Instantaneous characteristics of air velocities (a) and temperatures (b) in a room with a square ceiling diffuser measured at two different heights</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>(a) An example office, and (b) its simplified model for CFD</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>Velocity distribution at the near wall region</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>The comparison of CFD, multi-zone airflow network (ContamW) and coupled CFD-contamW model results</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Normalized local age of air and contaminant concentration distributions</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>An example of CFD calculated wind velocities to support site planning and promote natural ventilation</td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>A CFD example showing air velocities used in floor planning and layout of internal partitions for a naturally ventilated apartment</td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>Jet zones and characteristic velocity profiles in log-log plot</td>
<td></td>
</tr>
<tr>
<td>6.10</td>
<td>Development of the wall jet in front of the displacement diffuser</td>
<td></td>
</tr>
<tr>
<td>6.11</td>
<td>An example of simplified boundary condition</td>
<td></td>
</tr>
<tr>
<td>6.12</td>
<td>Computational fluid dynamics simulation results for the displacement ventilation (a) velocities, and (b) temperatures</td>
<td></td>
</tr>
<tr>
<td>6.13</td>
<td>Layout of the painting studio during art classes</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>Contaminant concentrations in the breathing plane for the existing and modified mixing ventilation</td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>The floor plan of the test house and multi-zone airflow network model</td>
<td></td>
</tr>
<tr>
<td>6.16</td>
<td>Measured vs. computed SF₆ concentrations</td>
<td></td>
</tr>
<tr>
<td>6.17</td>
<td>The layout of the displacement ventilation simulated and tested in the chamber</td>
<td></td>
</tr>
<tr>
<td>6.18</td>
<td>Comparison of (a) the velocity profiles, and (b) the temperature profiles at nine positions in the room</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Thermal manikin measuring resultant surface temperature values</td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>Example of a thermal flow analysis in an aeroplane passenger cabin</td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>Flow analysis in an open train carriage</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>(a) Local thermal sensation with respect to set-point deviation (from thermal neutrality) and thermal state of the whole body</td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>(b) Local thermal comfort related to the set point deviation</td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>Different relationships for PMV and PPD</td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>Example of a comfort zone for 90 per cent acceptability in terms of equivalent temperatures</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>Virtual thermal manikin exposed to transient conditions and subject to changes of the ambient conditions and clothing insulation over time</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>(a) Qualitative behavior of the observed and predicted indoor comfort temperatures</td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>(b) The same but for naturally ventilated (NV) buildings</td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>Psychrometric chart (Mollier chart) showing summer and winter comfort envelopes</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>(a) Acceptable conditions for naturally ventilated buildings</td>
<td></td>
</tr>
<tr>
<td>7.10</td>
<td>(b) ATC design values for the three categories of EN ISO 15251 (2007)</td>
<td></td>
</tr>
<tr>
<td>7.11</td>
<td>Daily minimum and maximum hourly operative room temperatures plotted against the daily average ambient air temperatures</td>
<td></td>
</tr>
<tr>
<td>7.12</td>
<td>Daily minimum and maximum hourly operative room temperatures plotted against the exponentially weighted running average outdoor temperatures for the comfort envelope of the EN ISO 15251 (2007)</td>
<td></td>
</tr>
</tbody>
</table>
7.13 Daily minimum and maximum hourly operative room temperatures plotted against the weighted running average outdoor temperatures 204
7.14 Deviation in [K] of the daily maximum operative temperatures from the upper band of category B 205
7.15 Averaged velocity field on a vertical plane, vertical temperature profile and draught risk 206
7.16 Skin and surface temperatures simulated using the human thermoregulation model FIALA-FE 207
7.17 A virtual climate chamber displaying the change in the thermal and physiological properties over time 208
7.18 (a) Comparison of simulation and experiment of dynamic thermal responses under transient conditions 209
7.18 (b) Display of the metabolic rate 209
7.19 Simulation approaches and required resolution of relevant performance indicators with respect to the interplay between different design stages 210
8.1 Schematic illustration of first and second order image sources 220
8.2 Mean relative error and respective standard deviations of simulated frequency-dependent reverberation times 227
8.3 Measured vs. simulated reverberation times 228
8.4 Mean differences between measured and frequency-dependent sound pressure levels 228
8.5 Measured vs. simulated sound pressure levels 229
8.6 Evaluation means based on real and auralized spaces 231
9.1 Results from a recent survey on the role of daylighting in sustainable design 236
9.2 Elements needed for a daylight performance simulation 238
9.3 Basic geometric model of a new building site with surrounding objects 239
9.4 Two applications for a massing model of an urban site 240
9.5 Daylight falling onto a site is usually divided into direct sunlight and diffuse daylight 242
9.6 Definition of solar azimuth and altitude angles 242
9.7 Sun chart diagram for Boston with a shading mask for a south-facing wall 243
9.8 Angles defining the position of the sun and a sky element 244
9.9 Sky luminous distribution over Boston on April 2 at noon 246
9.10 Calibrated high dynamic range photograph generated with a digital camera, a luminance meter and Photosphere 247
9.11 Radiance visualization of an office work place 248
9.12 Daylight factor calculation in a sidelit space in Autodesk Ecotect v5.6 249
9.13 Principle of the BRE split flux method 249
9.14 Principle of a backwards raytracer 250
9.15 (a) Division of the celestial hemisphere into disjoint sky segment; (b) Visual definition of a daylight coefficient 253
9.16 Calculated mean daylight factors of the sidelit space from Figure 9.12 255
9.17 Mean daylight factor calculated with Radiance versus the mean daylight factor according to the Lynes formula 257
9.18 The daylight factor defined 259
9.19 (a) Visualization of an example sidelit space; (b) daylight factor distribution in the space 260
9.20 Indoor illuminance distribution in the sidelit space from 9.19 under clear sky conditions on solar solstice and equinox days 261
9.21 DA and three UDI for the sidelit space from Figure 9.19 262
9.22 Temporal map of the point marked in the DA diagram in Figure 9.21 263
9.23 Radiance visualizations and associated DPGs 265
List of figures

9.24 Annual cumulated DGP profile 265
9.25 Annual DGP profiles and DA distributions 266
9.26 Illustration of the office room and surrounding area 274
9.27 Definition of the sky angle, θ, for the investigated space 275
9.28 Daylight factor distribution for the space facing south and north 276
9.29 Daylight autonomy distribution for the space facing south and north 276
10.1 Input data for evaluating moisture buffering in a room 280
10.2 The variation of the relative humidity inside the room 281
10.3 Royal Festival Hall, London, after the building completion and after a few years 282
10.4 Schematic representation of the two parts in wind-driven rain research 282
10.5 Perspective, front and top view of raindrop trajectories 284
10.6 Spatial distribution of the ratio $S_{\text{wind}}/S_{\text{h}}$ for a given rain event 284
10.7 Four of the building configurations for which the wind-blocking effect was investigated 286
10.8 Contours of the streamwise horizontal wind-velocity component 286
10.9 Contours of the wind-driven rain catch ratio 287
10.10 Catch ratio at the top corner of the windward facade 288
10.11 Model for numerical analysis with indication of boundary conditions 291
10.12 Comparison between HAM and CHAM at different positions on the exterior wall surface 292
10.13 Variation of the inside relative humidity 295
10.14 Moisture buffering design (MBD) curves 297
10.15 Water damage to Hunting Lodge St. Hubertus 298
10.16 Building models and surface grids used for calculation of the wind-flow pattern and wind-driven rain 299
10.17 Spatial distribution of the catch ratio 299
10.18 The moisture production rate 307
10.19 Model for numerical analysis 309
10.20 Variation of the inside relative humidity 310
10.21 (a) CHTC_e as a function of the distance along the plate; (b) CHTC_{AVG} as a function of V_∞ 311
11.1 HVAC component model structure 314
11.2 Air-mixing duct section 315
11.3 Centrifugal fan performance curves 316
11.4 Centrifugal fan non-dimensional performance curves 317
11.5 Rectangular duct friction loss model 319
11.6 Heating coil sub-system 320
11.7 Heating coil model 321
11.8 Three-port valve model 322
11.9 Proportional controller model 323
11.10 Heating coil and controller linking variables 323
11.11 Heating coil sub-system information flow diagram 324
11.12 Heating coil sub-system information flow diagram for successive substitution 326
11.13 Heating coil sub-system successive substitution pseudo-code 326
11.14 Newton-Raphson pseudo-code 328
11.15 HVAC system condition monitoring scheme 330
11.16 Information flow diagram for sequential equation solution 331
11.17 Optimization process 332
11.18 Input-output centrifugal fan model 337
11.19 Normalised fan performance curves 337
11.20 Pseudo-code for the friction factor successive approximation 338
11.21 Comparison of estimated (iterated) and calculated friction factor 339
11.22 Successive approximation convergence 339
12.1 Space heating and electrical demands of a house over a typical spring day 342
12.2 One possible system configuration of a SOFC micro-cogeneration device 344
12.3 Topology of FC micro-cogeneration model 346
12.4 Gas-to-water heat exchanger in FC micro-cogeneration model 347
12.5 Calibration of Equation (12.4) using experimental data 353
12.6 Configuration of SOFC micro-cogeneration heating plant 354
12.7 Monthly integrated electrical balance 355
12.8 Monthly integrated thermal balance 356
12.9 Comparison of annual results for three dispatch strategies 357
12.10 HVAC configuration for Assignment 1 360
12.11 Building electrical demand for Assignment 3 361
12.12 ε_{el} calibration for Assignment 2 363
12.13 Electrical conversion efficiency and thermal output results for Assignment 3 363
13.1 Simulated and measured heating usage in Harrington Tower for 2003 375
13.2 Simulated and measured daily heating usage for Harrington Tower 375
13.3 Example of calibration signatures 376
13.4 Characteristic signatures for a dual duct VAV system in Harrington Tower 377
13.5 Flowchart detailing the overall process of calibration 379
13.6 Harrington Tower on the Texas A&M University campus 380
13.7 Comparison of initial simulated and “measured” heating and cooling consumption values 381
13.8 Initial calibration signatures and relevant characteristic signatures 381
13.9 Calibration signatures and characteristic signatures for decreasing the U-value 382
13.10 Calibration signatures for Example #1 after calibration 382
13.11 Measured and initial simulated heating and cooling consumption as functions of average daily temperature 383
13.12 Initial calibration signatures and characteristic signatures for adding an economizer 384
13.13 Calibration signatures after economizer was added 384
13.14 Final calibration signatures 385
13.15 Measured and calibrated simulated heating and cooling consumption as functions of average daily temperature 386
13.16 Schematic diagram of single duct air handling units 387
13.17 Schematic diagram of dual duct air handling unit for library section 388
13.18 Schematic diagram of cooling only single duct air handling unit 388
13.19 Measured hourly heating and cooling energy consumption versus the ambient temperature 389
13.20a Comparison of baseline and measured cooling energy consumption 389
13.20b Comparison of baseline and measured heating energy consumption 389
13.21 Measured heating and cooling energy consumption after meter correction 390
13.22 Comparison of measured cooling energy consumption before and after repair of leaky pneumatic lines and implementation of optimal reset schedule 391
13.23 Comparison of measured heating energy consumption before and after repair of leaky pneumatic lines and implementation of optimal reset schedule 391
13.24 Sbisa Dining Hall 392
13.25 Time series and OA temperature dependent plots used to calibrate the Sbisa Dining Hall simulation 393
13.26 Measured and simulated chilled water energy consumption 394
13.27 Cumulative cost difference 394
13.28 CHW % difference plot of 9.55 GJ/day 395
13.29 Electric consumption for two 10 week periods 1 year apart 395
13.30 Jan.–Aug. 2006 average daily dew point temperature in College Station, TX 396
13.31 Building on the Texas A&M campus that is to be simulated in the ‘Activity’ 399
14.1 Examples of model-based building control 404
14.2 Process for fault detection and optimization in building operation 405
14.3 Model and validation levels 406
14.4 General structure of a model 406
14.5 Schematic of model calibration 408
14.6 Zoning of a TWH heater chamber 410
14.7 Section through an individual heater chamber (not to scale) 411
14.8 Zoning of heater chamber relative to heater element and ambient 411
14.9 RC network for construction element 412
14.10 Block model of the complete prototype TWH assembly 415
14.11 Block model of an individual TWH chamber 415
14.12 Initial parameter estimation result for training data set 416
14.13 Generalization result of initial estimated model to unseen testing data 417
14.14 Structure of an ARX model 420
14.15 Gray box models that subsume models with mixed characteristics are combined into one overall model of different parts 421
14.16 Gray box model that enhances a white box model using a black model for higher-order error correction 421
14.17 Gray box model created by using a white box model to produce a black box model 422
14.18 Process structure for offline building optimization 424
14.19 Process structure for online optimization 425
14.20 Real-time predictive optimal control schematic 426
14.21 Results of natural ventilation optimizations 431
14.22 Wholesale hourly electric price and demand profile in response to volatile price signal 432
14.23 Model-based control system context diagram 432
14.24 Schematic of closed-loop model-based optimal control 433
14.25 Equivalent thermal network for multilayer construction element 437
14.26 State space model simulation block 438
14.27 State space model parameter dialog form 439
14.28 Simulation program to evaluate the thermal response of high-mass and low-mass construction elements 440
14.29 Sample thermal response of high-mass and low-mass construction 440
15.1 (a) Irradiation distribution, and (b) thresholded 444
15.2 Cumulative annual solar irradiation distributions for three Swiss city districts 444
15.3 Conceptual structure of SUNtool 448
15.4 Monozone form of the CitySim thermal model 449
15.5 Interzonal connection between zones represented by the two-node thermal model 450
15.6 Fraction of land use classed as urban, and cooling energy demands for the city of Basel 455
15.7 Optimisation of tower height for solar irradiation utilisation 459
15.8 (a) An urban block with zones of different protection status, and (b) falsecoloured according to incident annual shortwave irradiation 459
15.9 Cumulative sky radiance distribution for Geneva: (a) global, and (b) diffuse 467
16.1 Percentage energy use by sector for the world and selected countries 472
17.1 Modeling vs. simulation 482
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td>Comparison between procedural, equation-based and actor-oriented component models</td>
<td>485</td>
</tr>
<tr>
<td>17.3</td>
<td>Representation of heat flow models with feedback control</td>
<td>487</td>
</tr>
<tr>
<td>17.4</td>
<td>Schematic view of a building system model in Modelica</td>
<td>491</td>
</tr>
<tr>
<td>17.5</td>
<td>Relative reduction in labor time and code size for equation-based vs. procedural programming languages</td>
<td>493</td>
</tr>
<tr>
<td>17.6</td>
<td>Schematic diagram of an HVAC system</td>
<td>495</td>
</tr>
<tr>
<td>17.7</td>
<td>Parametric plot of the normalised source energy consumption for cooling and lighting</td>
<td>499</td>
</tr>
<tr>
<td>17.8</td>
<td>Ptolemy II graphical user interface</td>
<td>500</td>
</tr>
</tbody>
</table>
List of tables

2.1 Case 1 Criteria and performance indicators 26
2.2 Case 2 Criteria and performance indicators 28
2.3 Ranking of owner’s needs 29
2.4 Project E criteria and performance indicators 30
3.1 Weather data items of use for building simulation 41
4.1 Sound absorption of unoccupied and occupied seating areas 58
4.2 Summary information on selected office buildings 63
4.3 Summary of the monitored indoor and outdoor parameters with the associated units 64
4.4 The structure of the collected data 64
4.5 Measuring range and accuracy of the sensors 64
5.1 Layer descriptions for Example 5.4 94
5.2 Conduction transfer function coefficients for Example 5.4 94
5.3 Exterior and interior surface temperatures for Example 5.4 94
5.4 Heat fluxes at the interior surface 95
5.5 Convection correlation coefficients for the Yazdanian and Klems (1994) model 98
5.6 Interior surface convection coefficients for use with the heat balance model 99
5.7 Solar absorptances 103
5.8 Window optical properties and SHGC 104
5.9 Surfaces of room in Example 5.7 112
5.10 Radiation example intermediate results 113
5.11 Weather conditions and previous hour 119
5.12 Zone surface temperatures and convection coefficients 127
5.13 Other convective heat gains 127
5.14 System heat transfer rate 128
5.15 System control profile 128
5.16 Layer descriptions for EIFS wall 139
5.17 Conduction transfer function coefficients for EIFS wall 139
5.18 Wall surface temperatures 139
5.19 Incident solar radiation on vertical walls 140
5.20 Outdoor air temperatures 141
5.21 Solar radiation incident on a southeast-facing surface in Atlanta, July 21 142
6.1 Wind pressure coefficients Cp for low-rise buildings up to three storeys in height 146
6.2 The k-ε, turbulence model parameters 154
6.3 Typical values for terrain dependent parameters 164
6.4 The summary of the zone properties 176
6.5 The summary of airflow path properties 176
6.6 The geometrical, thermal, and flow boundary conditions for the diffuser and window 178
6.7 The size and capacity of the heat sources 178
7.1 Categories for indoor thermal performance characterization according to EN ISO 7730 (2005) 198
7.2 Comparison of the different comfort classification schemes 205
8.1 Examples of room acoustics performance indicators with recommendations for their values 223
8.2 Perceived speech intelligibility for various ranges of STI-value 225
8.3 Evaluation axes and corresponding bi-polar scales for the evaluation of the acoustical quality of space 231
9.1 Optical properties of common material surfaces 239
9.2 Daylight simulation checklist 256
9.3 Three questions to consider when choosing a daylight simulation tool 257
11.1 Heating coil model thermal resistance parameters 322
11.2 System adjacency matrix (well-formed model) 324
11.3 System adjacency matrix (insoluble model) 325
11.4 System adjacency matrix 329
11.5 Centrifugal fan performance data 336
12.1 Electrical efficiency data for Assignment 2 360
13.1 Initial values of key simulation inputs for Example 1 380
13.2 Initial inputs for DDVAV AHU 383
13.3 Inputs used for the SDCV AHU 383
13.4 Initial error measures for Example 2 384
13.5 Error measures for the calibrated simulation 385
13.6 Calibration statistics of the Sbisa Dining Hall 393
14.1 Examples for different models or types of equations 409
14.2 Summary of black box models 418
14.3 Typical linear black box models for dynamic systems 419
14.4 Summary of the advantages and disadvantages of various model types 422
14.5 Summary of cooling energy savings from optimal MM control 430
14.6 Material properties of individual layers and composite wall 439
16.1 Generalized framework for policy analysis using building performance simulation 477
List of contributors

Godfried Augenbroe
Professor Godfried Augenbroe has a 35-year track record in the modeling and simulation of buildings. First at TU Delft in the Netherlands and since 1997 at the Georgia Institute of Technology in Atlanta, USA.

Charles S. “Chip” Barnaby
Chip Barnaby is Vice President of Research at Wrightsoft Corporation. He focuses on implementation of loads and energy simulation aspects of Wrightsoft software products. He also leads Wrightsoft’s research efforts, working on three ASHRAE projects.

Ian Beausoleil-Morrison
Dr Ian Beausoleil-Morrison is Associate Professor at Carleton University in Ottawa, Canada, where he holds the Canada Research Chair in the Modelling and Simulation of Innovative Energy Systems for Residential Buildings. Currently he is President of the International Building Performance Simulation Association (IBPSA) and co-editor of the Journal of Building Performance Simulation.

Bert Blocken
Bert Blocken is associate professor at the Unit Building Physics and Systems (BPS) at Eindhoven University of Technology in the Netherlands. He earned his PhD in 2004 at the Katholieke Universiteit Leuven, Belgium, with the thesis “Wind-driven rain on buildings – measurements, numerical modelling and applications”.

Jan Carmeliet
Jan Carmeliet has been a full professor at the Chair of Building Physics at ETH Zürich and head of the Laboratory of Building Technology of EMPA, Dübendorf (Swiss Federal Laboratories for Materials Testing and Technology), Switzerland since June 2008. His research interests concern mainly physical processes in multi-scale (porous) materials, poromechanics, particle flow, flow at urban scale, materials for energy technology, computational modelling.

David E. Claridge
David E. Claridge (MS and PhD, Stanford University) is the Leland Jordan Professor of Mechanical Engineering at Texas A&M University and is Director of the Energy Systems Laboratory. He is a fellow of ASME and ASHRAE and recipient of the E.K. Campbell Award from ASHRAE, a Faculty Distinguished Achievement in Research Award from Texas A&M University and has received three Best Paper Awards from ASME.

Drury B. Crawley
Dr Crawley is Director, Building Performance Products at Bentley Systems, Inc. He leads a group developing tools for building performance and sustainability. Previously he led the U.S. Department of Energy’s Commercial Building Initiative with a goal of market-ready net-zero energy commercial buildings by 2025.
Thijs Defraeye
Thijs Defraeye is a PhD student at the Laboratory of Building Physics at the Katholieke Universiteit Leuven, Belgium. His PhD research, which he started in 2006, mainly focuses on numerical modelling of convective heat and moisture transfer at exterior building surfaces due to air flow in the atmospheric boundary layer.

Dominique Derome
Since June 2008, Dominique Derome has been a Senior Scientist and Leader of the Multi-scale modeling group in the Wood Laboratory of EMPA, Swiss Federal Laboratories for Materials Testing and Research. Her research interests include multi-scale modelling of coupled mechanical and hygrothermal behaviour of wood, transport of liquid in wood, determination of air-wood boundary conditions, and large-scale experimental investigation of hygrothermal behavior of building assemblies.

Jan L.M. Hensen
Jan Hensen is full professor in building performance simulation in Eindhoven University of Technology. His teaching and research focuses on development and application of computational modeling and simulation for high performance buildings while considering building physics, indoor environmental quality and building energy systems.

Gregor P. Henze
Gregor P. Henze is professor of architectural engineering at the University of Colorado, holding a PhD in civil engineering as well as the Diplom-Ingenieur and MS in mechanical engineering. He has authored 70 peer-reviewed technical papers and is associate editor for the ASME’s Journal of Solar Energy Engineering.

Roberto Lamberts
Roberto Lamberts is a full professor in construction at the Department of Civil Engineering of the Federal University of Santa Catarina. He is also currently a board member of the International Building Performance Simulation Association (IBPSA) and vice president of the Brazilian Session, and counselor of the Brazilian Council for Sustainable Buildings.

Ardeshir Mahdavi
Professor Dr Ardeshir Mahdavi is the director of the Department of Building Physics and Building Ecology at the Vienna University of Technology in Austria. In the years 2005, 2006 and 2008, Professor Mahdavi has been consecutively awarded the “Austrian Building Award” in the research projects category.

Christian Neumann
Christian Neumann is one of the co-founders of the engineering company ‘solares bauen GmbH’, located in Freiburg, Germany (www.solares-bauen.de). Since 2005 Mr Neumann has been working as project engineer in the department of Thermal Systems and Buildings at Fraunhofer Institute for Solar Energy Systems in Freiburg, Germany. His main focus is the design and monitoring of energy efficient buildings.

Christoph Reinhart
Christoph Reinhart is an Associate Professor of Architectural Technology at Harvard University, Graduate School of Design. His research expertise is in daylighting, passive climatization and the influence of occupant behavior on building energy use. He is working on new design workflows and performance metrics that accommodate the complementary use of rules-of-thumb and simulations during building design.

Darren Robinson
A building physicist by training, Dr Robinson has been working for over ten years now in urban energy and environmental modelling. He is currently group leader of sustainable urban development with the Solar Energy and Building Physics Laboratory (LESO) at the Ecole
Polytechnique Fédérale de Lausanne (EPFL) in Switzerland. Darren has published over 50 scientific papers on the subject of urban modelling and was awarded the Napier-Shaw Medal by the CIBSE for one of these.

Jeffrey D. Spitler
Jeffrey Spitler is Regents Professor and C.M. Leonard Professor in the School of Mechanical and Aerospace Engineering at Oklahoma State University, where he teaches classes and performs research in the areas of heat transfer, thermal systems, building simulation, design cooling load calculations, HVAC systems, snow melting systems and ground source heat pump systems.

Jelena Srebric
Dr Srebric is an Associate Professor of Architectural Engineering and an Adjunct Professor of Mechanical and Nuclear Engineering at the Pennsylvania State University. She conducts research and teaches in the field of building energy consumption, air quality, and ventilation methods. She is a recipient of both NSF (National Science Foundation) and NIOSH (National Institute of Occupational Safety and Health) career awards.

Christoph van Treeck
Christoph van Treeck (Dr.-Ing. habil.) is head of the Simulation Group of the Department of Indoor Environment at the Fraunhofer Institute for Building Physics in Germany. He is involved in teaching activities as associate professor at the Technische Universität München. He holds the venia legendi for the subject of computational building physics and is a board member of the International Building Performance Simulation Association.

Michael Wetter
Michael Wetter is a computational scientist in the Simulation Research Group at Lawrence Berkeley National Laboratory (LBNL). His research includes integrating building performance simulation tools into the research process, as well as the design and operation of buildings. He is a recipient of the IBPSA Outstanding Young Contributor Award, the Vice-President of IBPSA-USA and a member of ASHRAE.

Jonathan Wright
Jonathan Wright is Professor of Building Optimization at Loughborough University in the UK. He has 25 years' research experience in the field of building performance simulation and its application to the optimum design and operation of buildings. He has published widely on the theme of model-based building optimization, and is a member of the IBPSA Board of Directors. He is currently leader of the Building Services Engineering group at Loughborough University.
The fossil fuels are entering their tertiary stage and steps are being taken in many countries to kick-start the transition to an alternative energy infrastructure. A pressing question is how this transition can best be managed, negative impacts mitigated, and the various technology options blended over time: fossil fuel de-carbonisation and sequestration in the short term, the deployment of energy efficiency measures, the switch to new and renewable source of energy, and the removal of barriers confronting new nuclear plant. A key aspect of any future energy infrastructure will be real-time demand management to facilitate the matching of demand with supply – especially where the latter comprises significant inputs from stochastic, distributed renewable energy sources. Because a large portion of a country's energy demand is associated with the built environment, it is here that productive action can be taken to reduce energy consumption whilst ensuring that expectations relating to human comfort/health and environmental protection are met.

The built environment is inherently complex and as a consequence conflicts abound, proffered solutions are often polarised and consensus is difficult to attain. This situation gives rise to three fundamental engineering challenges: how to consider energy systems in a holistic manner in order to address the inherent complexity; how to include environmental and social considerations in the assessment of cost-performance in order to ensure sustainable solutions; and how to embrace inter-disciplinary working in order to derive benefit from the innovative approaches to be found at the interface between the disciplines. In short, energy systems require an integrated approach to design: will the widespread deployment of micro-CHP within the urban environment be acceptable if the global carbon emission reduction to result is attained at the expense of reduced local air quality and increased maintenance cost?

Integrated building performance simulation has emerged as an apt means of addressing the above challenges while allowing collaborating practitioners to identify the action combinations that will be most effective in providing acceptable overall performance as a function of the unique climate, design and operational parameters defining specific buildings and communities, planned or existing. IBPS does this by modelling the heat, air, moisture, light, electricity, pollutant and control signal flows within building/plant systems and, thereby, nurturing performance improvement by design. The benefits of the power and universal applicability of the approach comes at a price however: application requires an understanding of design hypothesis abstraction, computer model building, multiple domain simulation, performance trade-offs, and the translation of outcomes to design evolution.

This book presents the complementary views of distinguished researchers in the field, arranged in a progressive format that covers the myriad issues underpinning the application of modelling and simulation when used to support decision-making relating to building performance and operation. In addition to the wide scope of topics covered, the book provides useful examples of the practical application of building simulation to formulate design and operational solutions that are acceptable in terms of performance criteria relating to indoor air quality, thermal/visual/acoustic comfort, operational/embodied energy, carbon emissions, and capital/running cost. A unique feature of the book is the balance between theory and practice.
on the one hand, and between the issues at the individual building and community level on the other. The book is essential reading to those practitioners and researchers who seek to understand and apply building simulation in a professional manner.

Joe Clarke
Energy Systems Research Unit
University of Strathclyde
Glasgow
December 2009
The rise of technology over the past decades has been something of a mixed blessing. On the one hand it has increased our freedom to move and communicate and has provided us with more comfort. On the other hand, it is widely understood that the energy use currently required to drive our modern way of living has led to critical environmental problems. These problems have been highlighted to such a degree through the explosion of research and news coverage over recent years, that it is now common knowledge that our lifestyle is unsustainable. In modern terminology, to slow down and hopefully reverse the manmade damage, we need to develop a sustainable and zero net energy built environment. This will involve not only the design of net energy producing new ‘green’ buildings, but also the optimization of energy use of existing buildings.

In line with the rise of technology, buildings and the systems within them have become exponentially more complex in recent times. The modern built environment is populated by a variety of building types with highly demanding performance and user requirements. The difficulties involved in optimizing energy use in buildings have been recognized for quite some time. The complexity of the task arises from the number of variables from a wide range of fields that must be considered. Many professionals and researchers, including ourselves, concluded that solving such a complex problem requires two things: interdisciplinary research involving a wide variety of disciplines, and well-developed technological tools to make the problem manageable.

In 1986 a group of like-minded individuals established the International Building Performance Simulation Association, IBPSA (www.ibpsa.org), a non-profit society of building performance simulation researchers, developers and practitioners dedicated to improving the built environment. IBPSA provides a forum for researchers, developers and practitioners to review building model developments, facilitate evaluation, encourage the use of software programs, address standardization, and accelerate integration and technology transfer.

IBPSA covers broad areas of building environmental and building services engineering. Typical topics include building physics (including heat, air and moisture flow, electric and day lighting, acoustics, smoke transport); heating, ventilation and air-conditioning systems; energy supply systems (including renewable energy systems, thermal storage systems, district heating and cooling, combined heating and power systems); human factors (including health, productivity, thermal comfort, visual comfort, acoustical comfort, indoor air quality); building services; and advancements and developments in modeling and simulation such as coupling with CAD, product modeling, software interoperability, user interface issues, validation and calibration techniques. All these topics may be addressed at different levels of resolution (from microscopic to the urban scale), and for different stages in the building life cycle (from early sketch design, via detailed design to construction, commissioning, operation, control and maintenance) of new and existing buildings worldwide.

In essence, IBPSA has two key objectives: to use computer simulation to (a) provide better support for the design of buildings; and (b) provide better support for building operation and management in the use phase of buildings. These two objectives have informed our own
research over the last decades. This book aims to give the reader a thorough understanding of
the recent progress made in building simulation and the key challenges that still need to be
overcome.

The main motivation for developing this book is that at the time of writing no comprehen-
sive text book on the subject was available even though building performance simulation
has become an essential technology for architectural and engineering design and consultancy
practices which aim to provide innovative solutions for their clients.

This book sets out to fill this gap by providing unique insight into the techniques of build-
ing performance modelling and simulation and their application to performance-based design
and operation of buildings and the systems which service them. It provides readers with the
essential concepts of computational support of performance based design and operation – all
in one book. It provides examples of how to use building simulation techniques for practi-
cal design, management and operation, and highlights their limitations and suggests future
research directions.

This book provides a comprehensive overview of building performance simulation for the
complete building life-cycle from conception to demolition. It addresses theory, development,
quality assurance and use in practice of building performance simulation. The book is there-
fore both theoretical and practical, and as such will be of interest to those concerned with
modelling issues (universities, research organizations and government agencies) and real world
applications (architects, engineers, control bodies, building operators). The book is primar-
ily intended for (future) building and systems designers and operators of a postgraduate level.
However, due to the interdisciplinary nature of research into the built environment, the book
should also prove useful for a variety of connected fields.

The interdisciplinary nature of the research becomes clear when it is understood that build-
ing performance simulation draws its underlying theories from many disciplines including:
physics; mathematics; material science; biophysics; human behavioral, environmental and
computational sciences. The book would lend itself to adaption for multidisciplinary courses,
for example AEC related university courses which address building performance prediction
and operational issues. Other courses might include it on their recommended reading list,
especially at the postgraduate level.

The book begins by introducing and describing the key features of building performance
simulation and sets the scene for the rest of the book. The concepts of performance indicators
and targets are discussed, followed by a discussion of the current and future role of building sim-
ulation in performance based building design and operation. This will lay the foundations for
in-depth discussions of performance prediction for key aspects such as energy demand, indoor
environmental quality (including thermal, visual, indoor air quality and moisture phenom-
ena), HVAC and renewable system performance, urban level modelling, building operational
optimization and automation. The book ends with a discussion of future directions for building
performance simulation research and applications in practice. The book aims to show that
when used appropriately, building performance simulation is a very powerful technique capable
of helping us achieve a sustainable built environment, and at the same time improving indoor
quality and productivity, as well as stimulating future innovation and technological progress in
the architecture, engineering and construction (AEC) industry.

We believe this book to be long overdue. We have been contemplating the idea of writing
it for many years. However, due to the interdisciplinary nature of the subject, writing such a
book required the cooperation of many individuals. Toward the end of 2006 the idea became
more concrete, and in early 2007 the co-authors and the publisher enthusiastically joined the
adventure. Despite our busy schedules, in 2008 a symposium was organized in Brazil to bring
colleagues together and allow them to present the content of their chapters. We would like
to thank Eletrobrás and Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) for their financial support of this event. The event proved to be an important catalyst
that allowed the book to progress to its finished state, even if it took a fair bit longer to finish
the book than originally anticipated. In the end, we are really very pleased with the results, and hope you will enjoy reading the book too.

This book is the result of cooperation and dedication of many individuals, in particular of course all co-authors. We would like to take the opportunity to also acknowledge the support of our universities: Eindhoven University of Technology, The Netherlands, and Universidade Federal de Santa Catarina, Brazil. Last but not least, we wish to express our gratitude to Duncan Harkness, Roel Loonen, Ana Paula Melo, Martin Ordenes Mizgier, Jikke Reinten and Marija Trcka for their editorial and practical support.

Jan Hensen, Roberto Lamberts, March 2010