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ABSTRACT 
The integration of techniques for uncertainty and 
sensitivity analysis in building performance 
simulation (BPS) has a number of potential benefits 
related to design. It allows assessing the accuracy of 
performance predictions; it can be used to provide 
concept specific design guidance, and it enables a 
robustness assessment of the design proposal to 
different future climate scenarios. The later is 
considered here. The problems associated with using 
climate data sets as input to sampling based 
uncertainty and sensitivity analysis techniques are; 
(1) these represent time series data with history, and 
(2) when used as reference data sets, are purpose 
bound. To address the problems a typical office room 
is exposed to measured historic weather files, 
projected future weather data and a derived artificial 
reference weather data set representative for the 
period and location. Its response is compared using 
peak cooling load as criterion for the buildings 
robustness. It is found that the individual artificial 
reference data sets are not suited to predict the peak 
cooling load and its uncertainty band, as they were 
created for the prediction of a specific performance 
metrics and for specific building types. However 
scenario based multi-year future weather data sets 
show the potential to be successfully used with 
sampling based uncertainty and sensitivity analysis 
techniques. 
 
INTRODUCTION 
The integration of techniques for uncertainty and 
sensitivity analysis in building performance 
simulation (BPS) has a number of potential benefits 
related to design. It allows assessing the accuracy of 
performance predictions; it can be used to provide 
concept specific design guidance, and it enables a 
robustness assessment of the design proposal to 
different scenarios. The later is considered here. The 
authors refer to building and HVAC systems design 
concepts as integrated building system (IBS) in the 
remainder of this paper. 
Over their life time a building and its systems are, 
exposed to a great variety of operational scenarios. 
Those are imposed on the IBS by occupants, control 
regimes and external climate. As those scenarios are 

likely to deviate from the original design conditions 
the risk exists that the IBS is not capable to maintain 
defined performance bandwidths. In this context the 
authors define robustness as: “The integrated 
building systems ability to maintain defined 
performance requirements, even if the conditions it is 
exposed to deviate from design conditions”. 
Today practitioner’s oversize HVAC systems to 
address potential future deviations. That results in, 
e.g., reduced HVAC system efficiencies in part load 
operation. Otherwise, if sized to small, the risk exists 
that the system is not capable of meeting comfort 
requirements, thereby reducing the productivity of 
building occupants.  
Based on the above peak loads can be considered a 
suitable performance metrics to assess robustness. In 
this paper the authors concentrate on the discussion 
of the peak cooling load, which is considered 
important in the context of the changing climate.  
There are two different approaches to assess the 
robustness of IBS’s, the absolute and the relative. 
The absolute assessment makes use of set maximum 
and/or minimum performance limits. It allows 
judging the system being robust or not. The relative 
assessment considers the rate of change, e.g., by 
different potential of integrated system concepts. It 
provides the means to rank-order the considered 
concepts. The relative assessment has the advantage 
of being applicable if there are not set performance 
limits available, as is the case for peak cooling load 
in the case study introduced later. 
Uncertainty and sensitivity analysis techniques have 
the potential to support practitioners to quantify the 
risk of performance failure due to variations in 
operational scenarios. The derived quantitative 
design information might lead practitioners to size 
systems according to design specific load variations 
over the buildings lifetime rather than by applying 
generic safety factors. 
In many BPS–tools, occupancy scenarios are defined 
by heat gain schedules. The related parameters can be 
individually perturbed assuming a distribution and 
used for sampling. Similarly, if multiple parameters 
are involved in defining scenarios, imagine a 
growing organization’s office. A more densely 
populated office space also requires higher 
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ventilation rates. The original and densely occupied 
scenario can be defined as discrete sets, weighted - 
based on likelihood of occurrence and sampled.  
Weather data sets, however, are traditionally 
represented as annual sets containing series of mean 
hourly values for parameters as dry bulb temperature, 
relative humidity, and wind speed. Perturbing 
recorded time series of one weather parameter 
disrupts the sets inherent history of climatic events. 
This means climate parameters cannot be considered 
continuous for sampling. The data series needs to be 
treated representing discrete events. Still, climate 
variations occur at different temporal scales, e.g., sub 
hourly, hourly, daily, seasonal, annual, decadal etc.  
The research questions investigated in this paper are: 

1. Which weather data have the potential to 
support the robustness assessment of IBS’s? 

2. How to treat scenarios, in particular climate 
scenarios, when using Latin hypercube 
sampling to facilitate an uncertainty and 
sensitivity analysis by regression analysis?  

3. Which time scale is appropriate for the 
representation of climate variations?  

 
METHODOLOGY 
Literature is reviewed to establish the state-of-the-art 
in methods to generate climate files for representing 
past and future climate variations for building 
performance simulation. 
A simulation study is carried out to investigate the 
applicability of different climate data sets when 
analyzing the uncertainty of performance metrics 
relevant for the robustness assessment of IBS’s. The 
climate files for these simulations are created by 
combining measured historic weather data and future 
climate change projections for the location De Bilt in 
the Netherlands. From 20 years projected hourly data 
sets artificial reference weather data sets were 
derived applying procedures from standards as ISO 
15927 (ISO, 2005) and NEN5060:2008 (Draft). 
The simulation study is based on a typical office 
room. To facilitate the multiple-run simulation study 
a prototype is used enabling simulation automation as 
well as storage and easy access to the simulation 
results. The data analysis included normality tests for 
the resulting parameter distributions before applying 
descriptive statistics to enable comparing the 
response of the office room to the exposure to 
different climate data sets. 
 
STATE OF THE ART 
Uncertainty analysis for BPS 
There are two general approaches to facilitate 
uncertainty analysis in BPS, the external and internal 
approach. They relate to the place of implementation, 
within or around simulation models (Macdonald, 

2002). The access to the simulation model in state of 
the art tools is in most cases restricted, which is why 
the authors consider the external approach to estimate 
uncertainties. Furthermore, external approaches can 
be differentiated into global and local uncertainty 
analysis methods (Lomas and Eppel, 1992, Helton et 
al., 2006). Global uncertainty analysis results in a 
measure of uncertainty by addressing the entire 
solution space, changing all parameters 
simultaneously across their full range, whilst local 
uncertainty analysis is used to identify the individual 
impact of selected input parameters on the predicted 
performance metric. 
The global method facilitated by Monte Carlo 
analysis, in particular Latin hypercube sampling 
extended with regression analysis, allows the 
propagation of uncertainties and the estimation of 
parameter sensitivities. A prerequisite of the 
application of the method is that the model input can 
be sampled. The application of the method in the 
domain of building simulation was successfully 
demonstrated with parametric model input in earlier 
publications (Struck et al., 2007); (Struck and 
Hensen, 2007). Perturbing recorded time series of 
climate parameter, as required by sampling schemes 
as Latin hypercube, disrupts their inherent history of 
climatic events. Rather than attempting the brute 
force method of simulating all available sets a more 
efficient way would be to identify the years 
responsible for the minimum and maximum value, 
representing the uncertainty range, for a selected 
performance metric. 
However, one building responds different to a 
specific climate than another. That fact excludes the 
generalization of conclusions regarding the impact of 
a specific climate file across different building types. 
Efforts to map the thermal stress placed a number of 
building types by different weather collections have 
been reported, e.g., by Argiriou et al. (1999), Clarke 
(2001), Hensen (2005). Clarke reported the effort to 
introduce a climate severity index. The regression 
based procedure defined by Clarke (2001) improves 
upon the use of the degree days as severity index.  
Representation of future climate variations 
Weather variations occur in different temporal scales, 
e.g., daily, seasonal, annual, decadal etc.  
The term “weather data sets” describes measured 
data sets indicating historic weather events for a 
specific location. “Climate data sets” are different as 
they refer to data sets that are considered 
representative for larger spatial and temporal scales, 
such as test reference years. 
Traditionally, BPS tools use annual climate data 
containing series of mean hourly values for relevant 
climate parameter. 
One approach to assess the design proposals 
robustness to climate variation is to use recorded data 
sets that extend as far as the expected lifetime of the 
integrated system, approx 30years. 
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However, historic data sets are unlikely to 
satisfactory describe the external future climate 
conditions due to global warming. To represent 
climate change in data sets for BPS, a widely used 
approach is to merge projected climate change data 
with historic data sets (Jentsch et al., 2008); (Belcher 
et al., 2005); (Crawley, 2008).  
In an attempt to categorize different techniques Guan 
(2009) refers to the method of an “imposed offset 
approach” which makes use of three operations of 
shifting, linear stretching, and shifting and stretching. 
The projected change is imposed on the parameter 
external air temperature and its probability density 
function is thereby, either, shifted, stretched or 
shifted and stretched. 
The extent of weather variables for which future 
change projections are available differ as to which 
resource is used. The Royal Metrological Institute of 
the Netherlands (KNMI) publishes dry bulb 
temperature and precipitation projections for four 
different climate change scenarios and time horizons. 
Measured vs. Artificial reference weather data 
sets 
The aim of performance simulations is to test 
alternative design options against periodic weather 
data. Thereby it is of interest how the building 
responds to average, most likely or extreme weather 
conditions for a specific location. Design aspects that 
are of interest to practitioners are utility bills, as a 
derivative of annual energy demand, and thermal 
comfort. 
For that purpose reference data sets are required to 
serve as input to simulation programs. Following 
Clarke’s (2001) argumentation, “A reference data set 
is a weather data collection which is representative, 
when judged against relevant criteria”. For instance 
the frequency of the air temperature observed during 
one year can be found to be representative for a 
period of 10 years. Reference data sets are compiled 
from long term, e.g., annual, measurements of 
selected weather parameters. 
Measured time series can be used directly as 
reference data sets, as is the case with years 1964/65 
for the location De Bilt in the Netherlands.  
Otherwise they are also used to compile artificial 
annual reference weather data sets. Different methods 
are in use resulting in different file formats. File 
formats are reported, for the prediction of the annual 
energy consumption for heating and cooling, such as 
the Test Reference Year (TRY), Typical 
Meteorological Year (TMY) and TMY2, and 
Weather Year for Energy Simulations (WYEC). See 
Clarke (2001) for an overview. The methods make 
use of different statistical procedures for selecting 
data from the measured time series; they make use of 
different weather parameters, and parameter weights. 
More methods are used to create weather data sets for 
the prediction of the indoor thermal comfort 
(NEN5060). 

Hensen (1999) pointed at problems associated with 
artificial reference data sets. He states that weather 
parameters, as temperature, solar radiation and wind, 
are not necessarily correlated. When selecting days 
or months to compile an artificial reference data set, 
the applied parameter specific weights might not 
correspond to the sensitivities of building under 
study. Hensen refers to different building types to 
illustrate the problem. A building with a high 
window to wall ratio (solar collector) might react 
most sensitive to variations in solar radiation, whilst 
a building with no windows (shed) is expected to be 
most sensitive to changes in  temperature.  
As artificial reference data sets are typically purpose 
bound they need to be carefully chosen for the 
specific type of performance study and “ideally” also 
for the type of at hand. 
Here we want to investigate how useful published 
reference data sets are compared to measured data 
sets for the prediction of the performance metric, 
peak cooling load. Peak cooling load is a 
performance metric required for the robustness 
assessment of IBS’s for which no explicit reference 
data set is available. 
As robustness is a problem that addresses the future 
performance of IBS’s the available measured historic 
data sets are projected 30 year into the future. For 
that purpose climate change scenarios published by 
the Royal Netherlands Meteorological Institute 
(KNMI) are used. 
The method published by the NEN 5060 was than 
applied to derive artificial reference data sets from 
the projected historic data. 
Measured historic data sets  
Measured historic data sets are available, originating 
from the KNMI, in hourly format for the location De 
Bilt for 30 years, from 1976 – 2005. For the 
simulation study the IBS was simulated with each 
individual weather file. 
Artificial reference data sets 
Four new artificial reference data sets and their 
underlying statistical selection procedure were 
published in 2008 by the NEN 5060 for performance 
simulation. Of those four files, one is dedicated to the 
prediction of annual energy consumption and three 
are to support the overheating risk assessment. The 
three files were compiled based on a statistical 
selection procedure using the five day mean of the 
dry bulb temperature. The five day mean temperature 
was chosen according to the time constant of 
buildings complying with the 2003 building 
regulations. The files are named 1%, 2% and 5% 
corresponding to the risk of the five day mean 
temperature to be exceeded for 1%, 2% or 5% in 
summer and to be undercut for 1%, 2% or 5% in 
winter. The data originate from a 20 year reference 
period, 1986 – 2005. That means the 1% year is the 
most extreme year as the risk that the external 
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temperature of the reference period exceeds or 
undercuts the temperature in the reference year is 
only 1%. Corresponding to the before, the 5% year 
represents the most moderate of the three. 
Projected historic data sets 
The measured historic data sets were projected 30 
years into the future using the most extreme KNMI 
climate chance scenario, W+. The W+ scenario is the 
most extreme of four scenarios. It assumes the global 
mean air temperature to increase by 2K from 1990 to 
2050 and a change of the air flow pattern over 
Western Europe with more westerly winds in winter 
and more easterly winds in summer. The KNMI 
regards the published climate change scenarios as 
equally likely. For an impression of how robust an 
IBS performs, the authors consider only the most 
extreme scenario.  
The KNMI publishes data quantifying the scenarios 
on their web page for impact studies for two climate 
parameters; dry bulb temperature and precipitation. 
The available data is based on a 30 years reference 
period, 1976 - 2005. The user can chose a location, 
time horizon and a scenario. In case of the dry bulb 
temperature, the output is provided in daily mean air 
temperatures for the projected reference period. The 
authors chose to project the reference period 30 years 
ahead, 2006 – 2035. The 30 years time horizon was 
chosen as this period corresponds with the expected 
lifetime of HVAC equipment. The difference 
between the projected daily mean air temperature and 
measured historic daily mean air temperatures was 
added to each hour of the corresponding day. 
Applying the procedure the authors created 20 
projected data sets for the use with simulation tools. 
The prepared 20 years of data corresponds to the 20 
year NEN 5060 reference period. 
Projected artificial reference data sets 
Using the projected data sets as outlined in the step 
before the selection procedure as defined in the NEN 
5060 was used to generate four artificial reference 
data sets. The four artificial reference data sets, one 
for energy and three for thermal comfort assessment, 
represent the about 30 years projected reference 
period 1986 - 2005. 
 
PROTOTYPING 
Following the incremental research approach, 
improving upon the existing, external methods were 
considered for the integration with state of the art 
tools. In our case the tool, VA114 - a Dutch industry 
standard simulation tool to facilitate overheating risk 
and energy analysis was used for the simulations 
(VA114, 2009). The performance metrics annual 
demand for cooling heating and peak cooling loads 
were used for presenting the results. To automate the 
simulations and store the results in a structured and 
easily accessible format MATLAB R2006a was used. 
 

CASE STUDY 
The case study represents a standard, integrated 
building and system, office concept. The space is 
ventilated making use of a hybrid ventilation scheme. 
The air is naturally supplied and mechanically 
extracted. Heating and cooling is provided making by 
4-pipe fan coil unit with heating set point at 21oC and 
cooling set point at 24oC. The space is occupied by 
two people from 8:00 to 18:00hours. Figure 1 and 2 
show the conditioning concept and office location, 
respectively. 
 

 
Figure 1 Office conditioning concept – Standard 

 

 
Figure 2 Floor plan and architectural grid 

 
RESULTS 
The distribution of the annual cooling demand 
calculated using the measured historic weather data 
sets from 1986–2005 is compared with data from the 
same reference period projected 30 years ahead 
applying the most extreme KNMI scenario W+.  
Figure 3 indicates for the projected historic climate 
data sets a distribution, which is shifted right towards 
higher cooling demands, a greater variance when 
compared with results from the measured historic 
data.  
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Figure 3 Probability density plot for annual cooling 

demand 

Figure 4 indicates that the uncertainty range by the 
measured historic weather data sets is 345kWh for 
the which corresponds to the mean value (1056kWh) 
+/- 16%. The median from the distribution of the 
annual cooling loads for the historic data sets 
corresponds with the result from the reference year 
for energy demand calculations. The cooling demand 
calculated with the artificial reference years for 
comfort assessment exceeds the max. cooling 
demand by the historic data sets on average about 
11%. 

 
Figure 4 Annual cooling demand; from 20 measured 
historic weather data sets - distribution indicated by 
mean, median, 5th and 95th percentiles; and from 4 

artificial reference weather data. 

The difference between the median and mean of the 
distribution for the annual cooling demand indicates 
a slight positive skew. The normality of the 
distribution was tested. There are different methods 
to test normality of a distribution such as Lilliefors, 
Chi squared test among others. The authors use the 
skew and kutosis statsictics as described by Miles 
and Shevlin (2001). It was found that the deviation 
does not deviate significantly from a normal 
distribution as its skew statistic is smaller than 1.0 
and is less than twice the standard error of the skew.  
Subsequently, the results from the projected historic 
weather data are compared with results from 
projected artificial reference data. 

Figure 5 shows the results from running the 
simulations with projected data series. Compared 
with the data presented in figure 4 the results appear 
to be shifted 200kWh scale upwards. The uncertainty 
range predicted by the projected weather data sets is 
381kWh, which corresponds to the mean value 
(1273kWh) +/- 15%. As noticed before the value for 
the median of the projected data sets corresponds 
well with the annual cooling demand by the reference 
year for energy calculations. The cooling demand 
calculated from the projected artificial reference 
years for comfort assessment exceeds the max. 
cooling demand by the projected historic data sets on 
average about 9.5%. The reduction of the percentage, 
compared to the historic data sets, is due to the 
general increase of the annual cooling for the 
projected data sets.  

 
Figure 5 Annual cooling demand; from 20 projected 

historic weather data sets (KNMI W+ scenario) - 
distribution indicated by mean, median, 5th and 95th 
percentiles; and from 4 projected artificial reference 

weather data. 

As the annual energy demand for cooling cannot 
directly be used to relate the integrated system 
performance to its robustness the analysis was 
extended to the peak cooling load.  

 
Figure 6 Peak cooling load; from 20 measured 

historic weather data sets - distribution indicated by 
mean, median, 5th and 95th percentiles; and from 4 

artificial reference weather data. 
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Figure 6 indicates that the uncertainty range by the 
measured historic weather data sets is 0.55kW, which 
corresponds to the mean (2.36kW) +/- 12%. The 
peak cooling loads calculated from the artificial 
reference years for energy and comfort assessment 
appear to be clustered, in no obvious order, around 
values corresponding with the upper end of the 
results from the measured historic data sets.  
The lowest peak load was calculated for Comf. 1% 
followed by Comf. 5% and energy data set. The 
maximum peak load was calculated with Comf. 2%.  
Thereafter, the results from projected data sets are 
compared with results from  
Figure 7, shows the results from running the 
simulations with projected historic and projected 
artificial reference data sets. Compared with the 
results from using measured historic data the peak 
cooling load appears to be shifted 0.2kW scale 
upwards. 
The uncertainty range predicted by the projected 
weather data sets is 0.7kW which corresponds to the 
mean (2.5kW) +/- 13%.  
As before the peak cooling loads calculated from the 
reference years for energy and comfort assessment 
are clustered, in no obvious order, around values 
corresponding with the upper end of the results from 
the projected historic data sets. The lowest peak load 
was calculated for Comf. 1% followed by Comf. 5% 
and energy data set. The maximum peak load was 
calculated with Comf. 2%. 

 
Figure 7 Peak cooling load; from 20 projected 

historic weather data sets (KNMI W+ scenario) - 
distribution indicated by mean, median, 5th and 95th 
percentiles; and from 4 projected artificial reference 

weather data. 

 
DISCUSSION 
The results for the annual cooling demand show a 
good agreement between the median of the measured 
and projected historic data sets and derived artificial 
reference data set for energy predictions. The 
observation confirms the expectation that the 
artificial reference file for energy consumption 

simulations is well suited to represent the reference 
period.  
When using the artificial reference years to predict 
the annual cooling demand two things can be noticed. 
First, the most extreme data set 1% predicts the 
highest cooling demand and the least extreme the 
lowest. That indicates that the annual cooling 
demand of the case study is indeed dominated by the 
by the weather parameter dry bulb temperature. 
Secondly it can be notices that the artificial reference 
files for the comfort assessment lead to 
overestimation of the cooling demand for the case 
study of 11% and 9.5%. 

Table 1 Annual cooling demand, Statistics 

 Measured 
historic 
weather sets 

Projected 
historic 
weather data 

Mean [kWh] 1055.8 1272.7 

Stand. deviation 
[kWh] 136.3 148.9 

Uncertainty range 
[kWh] 345.1 381.0 

Deviation from 
mean [%] +/-16.3 +/-15.0 

The results for the peak cooling load indicate that the 
artificial reference data sets are not representative for 
the data sets of the measured historic weather data. 
The results from the artificial reference data sets are 
clustered in no logic order around the upper end of 
the predicted peak cooling loads.  
However, the missing logic in the order of the data 
points indicates that the dry bulb temperature, as 
selection criteria for the compilation of the artificial 
reference files, does not dominate the peak cooling 
load. The most extreme data set, Comf 1%, even 
shows the lowest peak cooling load! 
 
INTGRATED BUILDING SYSTEMS 
The presented study makes use of measured and 
projected historic data sets plus artificial reference 
data sets. The aim was to investigate if selected 
projected artificial reference data sets could be used 
to predict the peak cooling load which can be used to 
assess the a IBS’s robustness.  
It was confirmed that the artificial reference data 
cannot be used to predict uncertainty ranges for the 
peak cooling load, a performance metric alien to the 
statistical selection procedure. The selection 
procedure targets particular climate parameter and 
building types by using selection criteria specific to a 
certain building type for example, buildings time 
constant.  
The different ranking of the artificial reference data 
sets nicely indicates the different sensitivity of the 
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performance metrics, annual cooling demand and 
peak cooling load for the specific case at hand.  
Little is known about the severity of the response of 
specific performance metrics to the climate data 
used. Clarke (2001) characterized residential 
buildings using parameters capacity, capacity 
location window size, infiltration rate and insulation 
level to categorize typical constructions. Still the 
work excludes HVAC system parameters that define 
the response of integrate building systems to climate 
variations. 
In the search for appropriate file formats to predict 
the uncertainty range for the peak cooling loads the 
presented artificial reference data sets for annual 
energy predictions and comfort assessment could be 
excluded. The next logical step will be to consider 
the set of measured historic data serving as reference 
period to the selection procedure, and their scenario 
based future projections. 
The advantage of using the projections of multi-year 
measure historic climate files is that they can be 
assigned a probability of occurrence in case the 
information is available. That enables the use of the 
data sets with sampling based uncertainty and 
sensitivity analysis techniques. A disadvantage is the 
computational expense simulating the multi-year 
weather files. Another challenge is to store and post-
process the wealth on performance data. 
 
CONCLUSIONS 
The aim of the study was to investigate if reference 
weather data sets, when derived from projected 
future climate data sets, can be used to estimate the 
uncertainty of critical performance indicators to 
facilitate a robustness assessment for an integrated 
building system. 
It was found that the approach does not provide 
useful data to derive uncertainty bands, similar to the 
reference period as the metrics to be predicted have 
to comply with the original purpose of the artificial 
reference data set, e.g., the annual cooling load. 
However the study did provide useful insights that 
guide towards the use of projected multi-year 
weather files for estimating the uncertainty of the 
performance metrics as peak cooling load. 
The potential advantage of the projected multi-year 
weather files is that they are scenario based, which 
allows to consider them as discrete events for 
sampling based uncertainty and sensitivity analysis 
techniques. 
 
 
FUTURE WORK 
In order to prove the feasibility of the suggested 
approach of using multi-year projected weather data 
sets to predict the uncertainty range of the peak 

cooling load, the existing prototype needs to be 
expanded. Furthermore, the scenario based climate 
files need to be prepared to facilitate the simulations.  
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