ENERGY AND BUILDINGS

August 2004

An international journal devoted to investigations of energy use and efficiency in buildings

CONTENTS

Special issue on 'Performance simulation for better building design'
A. Hansen and G. Augenbroe

An interoperability workshop for design analysis integration
G. Augenbroe, P de Wilde, H.J. Moon and A. Malikawi

Providing computational support for the selection of energy saving building components
P de Wilde and M. van der Velden

Using simulation to formulate domestic sector upgrading strategies for Scotland

Measurement of thermal environment in Kyoto city and its prediction by CFD simulation

An approach for coupled simulation of building thermal effects and urban climatology
J. Tanino, A. Hagihana and P. Chintkala

Numerical modelling and thermal simulation of PCM-gypsum composites with ESP-r
D. Heim and J.A. Clarke

Development of a thermal energy storage model for EnergyPlus
P. Rem, M. Kneel and O.F. Heise

Spatio-temporal dynamics of solar shading for a parametrically defined roof system
J. Marculevic

The inlet temperature as a boundary condition for multiple-skin facade modelling
D. Saezeta, S. Rehri and H. Hess

The role of simulation in support of Internet-based energy services

The use of simplified weather data to estimate thermal loads of non-residential buildings
P.S. Westphal and R. Lambert

Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100-E200 test suite
R.H. Hessinger, M.J. Winie and D.B. Crevelry

Special issue:
Performance Simulation for Better Building Design

Guest Editors:
Jan Hansen
Godtfred Augenbroe

This journal is part of ContentsDirect, the free alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for ContentsDirect online at: http://contentdirect.elsevier.com
Aims and Scope
Energy and Buildings is an international journal devoted to investigations of energy use and efficiency in buildings. Its aim is to present new research results, and to review practice aimed at reducing energy needs of a building and improving indoor environment quality.

Types of Contributions
Original research papers - Reviews of specialized topics - Technical notes (max. 4 pages) - Research communications - Reviews of books and reports - Notices of meetings and conferences.

Publication Information: Energy and Buildings ISSN 0378-7788. For 2004, Volume 35 is scheduled for publication. Subscription prices are available upon request from the Publisher or from the Regional Sales Office nearest you or from this journal's website (http://www.eleven.com/journals/enerbuild/). Further information is available on this journal and other Elsevier products through Elsevier's website (http://www.elsevier.com). Subscriptions are accepted on a prepaid basis only and are entered on a calendar year basis. Issues are sent by standard mail (surface within Europe, air delivery outside Europe). Priority rates are available upon request. Claims for missing issues are made within six months of the date of dispatch.

Orders, claims, and journal enquiries
Please contact the Customer Service Department at the Regional Sales Office nearest you.

Orlando
Elsevier
Customer Service Department
5272 San Mateo Drive Orlando
FL 32867-4001, USA
Phone: (+1) 321-805-6770
Fax: (+1) 201-410-7614
E-mail: csus@elsevier.com

Amsterdam
Elsevier
Customer Service Department
P.O. Box 211, 1000 AE Amsterdam
The Netherlands
Phone: (+31) 20-4852760
Fax: (+31) 20-4853332
E-mail: elscus@elsevier.com

Tokyo
Elsevier
Customer Service Department
2-10-17 Shinjuku-ku
Tokyo 162, Japan
Phone: (+81) 3-5681-6587
Fax: (+81) 3-5681-3307
E-mail: gcseu@elsevier.com

Note (Latin America): For orders, claims and help desk information, please contact the Regional Sales Office in New York as listed above.

Acknowledgement
The cover image is taken from a figure showing how flow is increased space as published in Flow and Temperature inside a High-rise Residential Building under the condition, M. Ston, M. Lee and P.Y. Wu, Energy and Buildings, 33 (2001) 272-279.

Proofs
Authors will receive proofs which they are requested to correct and return as soon as possible. No new material may be inserted in the text at the time of proof-reading. A revised proof must be dated and the author must have requested and received the Editor's approval.

Offprints
Twenty-five offprints of each paper will be supplied free of charge to the author(s). In addition, the author will receive a free copy of the issue in which the paper appears. Additional offprints may be ordered at prices shown on the offprint order form.

Author enquiries
For enquiries relating to the submission of articles (including electronic submission where available) please visit Elsevier's Author Gateway at http://authors.elsevier.com. The Author Gateway also provides facilities to track accepted articles and set up e-mail alerts to inform you of any article's status as it changes, as well as details of the Accepted Article Guidelines and Copyright Information, frequently asked questions and more.

Contact details for questions arising after acceptance of an article, especially those relating to proofs, are provided after registration of an article for publication.

There are no page charges.
Performance Simulation for Better Building Design

Guest Editors

Jan Hensen

Technische Universiteit Eindhoven, Center for Building & Systems TNO-TU/e,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
J.Hensen@tue.nl

Godfried Augenbroe

College of Architecture, Georgia Institute of Technology
Atlanta, GA 30332-0155, USA
Fried.augenbroe@arch.gatech.edu
Performance simulation for better building design*

This thematic issue contains twelve papers that address recent advancements in the field of simulation of building behavior. The papers represent a selection of papers presented at the IBPSA 2003 conference which was held from 11–14 August 2003 in Eindhoven. The conference which was run under the theme “Simulation for better building design”, was the 8th conference in a series of double blind peer reviewed conferences hosted by IBPSA (International Building Performance Simulation Association) since 1989 when the first conference was organized in Vancouver (1989). Since then, Nice (1991), Adelaide (1993), Madison (1995), Prague (1997), Kyoto (1999), Rio de Janeiro (2001) and Eindhoven (2003) have followed. The next, Building Simulation 05 conference, will be held in Montreal. IBPSA provides a forum for researchers, developers and practitioners to foster new developments, encourage the development and proliferation of software programs throughout the industry, address standardization, accelerate integration and promote technology transfer.

Over the past two decades the building simulation discipline has matured into a field that offers unique expertise, methods and tools for building performance evaluation. It draws its underlying theories from diverse disciplines, mainly from physics, mathematics, material science, biophysics, human behavioral, environmental and computational sciences. The theoretical challenges are bountiful when one recognizes that the physical state of a building is the result of the complex interaction of a very large set of physical components. The integration of these interactions in one behavioral simulation poses major modeling and computational challenges. Its ability to deal with the resulting complexity of scale and diversity of component interactions has gained building simulation a uniquely recognized role in the prediction, assessment and verification of building performance. The building simulation discipline is continuously evolving and maturing and improvements are continuously taking place in model robustness and fidelity. As a result the discussion has shifted from the old agenda that focused on software features to a new agenda that focuses on the effectiveness of model based control over simulation tools in building life cycle processes.

The papers in this issue extend the knowledge base in the general areas addressed above and apply building simulation in various novel fields. This thematic issue offers different perspectives on these issues and deals with the next generation of building performance simulation, recognizing the need for the management of the simulation process as an element in the larger management processes executed in the architectural and engineering office. The agenda in that field is driven by the need to increase effectiveness, speed, quality assurance, and users’ productivity. An important aspect is the integration of simulation software applications with other design applications.

Different interaction paradigms with building performance information and dynamic control paradigms are emerging. They will change the way that building simulation is incorporated in decision making, during all stages of design, from inception through operation and use. Taking this one step further, it will become common place to interact with the world around us through simulation models that are executed in the background. One will be able to interrogate this simulation model about the consequences of the proposed system intervention one is about to make. This is just one manifestation of ‘invisible’ and ubiquitous simulation on which some papers offer deeper reflections. It is expected that new developments will radically influence the way that simulation is performed and its outputs used in design evolution and post occupancy decision making. Apart from this shift from simulation of phenomena to design decision making, there are a number of major trends that appear from the papers in this issue, such as the shift from the need for “raw number crunching” to the need for support of the “process of simulation”, and from “tool integration” to the “process of collaboration”.

In spite of the fact that these trends are receiving increasing attention there is no escaping the fact the building simulation discipline still has some distance to travel to bridge the traditional “divide”, caused by the asymmetric ignorance between the design and engineering disciplines in the building industry. Many aspirations remain to be achieved, such as the support for rapid evaluation of alternative designs, better adaptation of simulation tools to decision making processes, and team support of incremental design strategies. Quality assurance procedures and better management of the inherent uncertainties in the inputs and modeling assumptions in

0378-7788/3 – see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.enbuild.2004.06.004
simulation are two other areas where more progress is needed.

195 papers were presented during the BS03 conference, twelve of which have been selected for inclusion in expanded and improved form in the thematic issue before you. The twelve papers constitute an interesting cross section of the development of the field and may be viewed as road sign to what lies ahead.

The first three papers deal with various design support issues. Augenbroe's paper describes the Design Analysis Integration (DAI)-initiative which aims to steer towards new solutions for design analysis integration that may overcome the limitations of current data-centric interoperability approaches. This paper reports on the first phase of the development, which has produced a first-generation 'workbench' prototype for managing a process driven design analysis dialogue.

The paper by De Wilde and Van der Voorden addresses the integration of building simulation tools and building design. This problem has been narrowed down to computational support for one specific type of building design decision: the selection and integration of one or more energy saving building components like solar walls, advanced glazing systems, sunspaces and photovoltaic arrays into a given building design.

The first paper by Clarke et al. describes the application of a building simulation program to construct a decision-support tool for use by Scottish policy makers. It is argued that the generic nature of the tool renders it suitable to support the cumulative roll-out of upgrade measures in the long term, both within and outside the UK. The tool is then used to appraise the impact of the upgrade measures that might be applied to the Scottish housing stock.

Then follow two papers related to the urban climate. The paper by Takahashi et al. investigates the characteristics of heat flow in urban areas, and describes a model which can be used to investigate the effect of additional green on roofs and ground in order to mitigate urban heat island effects and to improve the urban thermal environment at street level.

Tanimoto et al.'s paper describes another tool for evaluation urban heat island effects. This paper describes the objectives and fundamental methods underlying the tool, as well as the structure and numerical techniques of the software.

The next two papers deal with energy storage. The paper by Heim and Clarke describes the numerical modeling and thermal simulation of phase-change material in a whole building energy simulation environment.

Ihm et al.'s paper deals with the integration of ice based thermal storage systems in another whole building energy simulation environment.

The next four papers address a mix of issues. Mardaljevic's paper describes a new image-based technique to quantify the effectiveness of shading devices, which is founded on predictions of direct solar irradiation using hourly meteorological data for a full year. The technique produces numerical output, as well as synoptic images that reveal the spatial and temporal variation of solar irradiation.

The paper by Saelens et al. draws the attention to the importance of a correct modeling of the inlet temperature of naturally and mechanically ventilated multiple-skin facades. The paper presents experimental and sensitivity analysis results, and uses an integrated whole building energy simulation to indicate the importance of a correct inlet temperature on the energy performance.

A second paper by Clarke et al. describes possible roles for simulation support in e-services. It is about the establishment of an infrastructure which enables the development of a range of new energy, environment and health-related services for people in their homes and workplaces using the Internet and making use of building modeling and simulation.

Westphal and Lamberts present in their paper a methodology to analyse the thermal loads of non-residential buildings based on simplified weather data. The methodology showed good results for cases with low mass envelope but revealed limitation to represent thermal inertia influence on the annual cooling and heating loads.

Finally the paper by Henninger et al. discusses analytical and comparative testing of an integrated whole building energy simulation software in terms of its heating, ventilating and air-conditioning equipment models. The paper demonstrates the use of the Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) which was published in 2002. The authors state that these tests proved to be very useful in debugging and verifying air-conditioning equipment models and algorithms. The paper summarizes the difficulties encountered and the benefits gained in applying these quality assurance tests.

Acknowledgements

Many individuals and organizations have made substantial contributions towards the success of Building Simulation 2003 in Eindhoven. In addition to all reviewers, we thank in particular Joe Clarke, Roberto Lamberts, Harunori Yoshida, Jeff Spitler, Jonathan Wright and Terry Williamson for their role in the scientific executive committee and in the selection of the papers for this special issue.

Jan Hensen
Technische Universiteit Eindhoven
Center for Building & Systems TNO-TU/e, P.O. Box 513
5600 MB Eindhoven, The Netherlands
Corresponding author. Tel.: +31-40-247-2988
fax: +31-40-243-8595
E-mail address: J.Hensen@tue.nl (J. Hensen)

Godfried Augenbroe
College of Architecture
Georgia Institute of Technology
Atlanta, GA 30332-0155, USA
E-mail address: Fried.augenbroe@arch.gatech.edu
(G. Augenbroe)
Contents

Special Issue: Performance Simulation for Better Building Design

Special issue on ‘Performance simulation for better building design’ .. 735
 J. Hensen and G. Augenbroe

An interoperability workbench for design analysis integration ... 737
 G. Augenbroe, P. de Wilde, H.J. Moon and A. Malkawi

Providing computational support for the selection of energy saving building components 749
 P. de Wilde and M. van der Voorden

Using simulation to formulate domestic sector upgrading strategies for Scotland 759

Measurement of thermal environment in Kyoto city and its prediction by CFD simulation 771

An approach for coupled simulation of building thermal effects and urban climatology 781
 J. Tanimoto, A. Hagishima and P. Chermak

Numerical modelling and thermal simulation of PCM–gypsum composites with ESP-r 795
 D. Heim and J.A. Clarke

Development of a thermal energy storage model for EnergyPlus ... 807
 P. Ihm, M. Karrati and G.P. Henze

Spatio-temporal dynamics of solar shading for a parametrically defined roof system 815
 J. Mardaljevic

The inlet temperature as a boundary condition for multiple-skin facade modelling 825
 D. Saelens, S. Roels and H. Hens

The role of simulation in support of Internet-based energy services ... 837

The use of simplified weather data to estimate thermal loads of non-residential buildings 847
 F.S. Westphal and R. Lamberts

Analytical and comparative testing of EnergyPlus using IEA HVAC BESTEST E100–E200 test suite 855
 R.H. Henninger, M.J. Witte and D.B. Crawley

The publisher encourages the submission of articles in electronic form thus saving time and avoiding rekeying errors. A leaflet describing our requirements is available from the publisher upon request.

This journal is part of ContentsDirect, the free alerting service which sends tables of contents by e-mail for Elsevier books and journals. You can register for ContentsDirect online at: http://contentdirect.elsevier.com

doi:10.1016/S0378-7788(04)00175-6